Close
Explore more Centres, Projects and Groups
Welcome
Welcome Banner
Blood-samples. Credit: Antonio Mendes

Febrile Illness Evaluation in a Broad Range of Endemicities (FIEBRE)

FIEBRE aims to reveal leading causes of fever in sub-Saharan Africa and southeast Asia. What are the main infections causing fever in children and adults, and how should they be treated?

Bottom Content
About us

Rapid diagnostic testing for malaria has revealed that most febrile patients in Africa and Asia do not have malaria. FIEBRE will find out what they have and how to treat them.

Who we are

Funded by the UK Foreign, Commonwealth and Development Office, FIEBRE collaborators include LSHTM, Liverpool School of Tropical Medicine, Universities of Barcelona, Oxford and Otago, and partners in Laos, Malawi, Mozambique and Zimbabwe.

Publications

Study protocols, standard operating procedures, data collection tools and related materials will be made available as they are finalised and approved.

About
About FIEBRE

The objective of FIEBRE is to provide evidence:

  • on the most common infectious causes of fever;
  • on antibiotic susceptibility of bacterial causes;
  • on how local perceptions of fever affect treatment practices including the use of diagnostics and antimicrobial drugs;
  • to inform clinical guidelines and algorithms on how to manage non-malarial fevers.

The FIEBRE study will help to fill the gaps in evidence by means of a multi-centre study in countries with a high burden of infectious disease from which few or no data are available. The clinical and laboratory components of the study will focus on detecting infections that are treatable and/or preventable. Ethnographic work with community members, prescribers and public health workers will seek to understand how fever is understood by different communities of practice, and how this affects treatment practices.

The results will help to inform updated, evidence-based algorithms for the management of febrile illness, and provide data that may be used to design new diagnostics and rational approaches to disease surveillance. These outputs will ultimately help health systems and providers to provide more appropriate care to patients and lead to better clinical outcomes.

Read the FIEBRE brochure (pdf) to find out more.

Social science

We currently know little about the antibiotics being used to treat febrile illnesses and how we could safely reduce antimicrobial use. Social science research has been called for to understand our relationships with antibiotics and how we can optimise their use in fever case management. The social science component of FIEBRE seeks to understand how fever is understood by different communities of practice and how this affects treatment practices. It aims to explore how fever case management and antimicrobial use are entwined with social, economic and political life in Malawi, Myanmar and  Zimbabwe.

The work includes participant observation and interviews in a variety of settings including clinics, hospitals, pharmacies, markets and households, as well as a medicines survey to identify broader patterns of antibiotic use and access at the community level. Findings will be used alongside clinical data to inform revised guidelines for fever case management that are sensitive to the contexts in which they are used. See the protocol (pdf) for more details.

What are we looking for?

Some diagnostic tests are performed at or near the point of care at each study site. Further pathogen-based diagnostic tests  and quality control tests will be performed at internationally recognised reference laboratories. For more details see the FIEBRE protocol paper.

Diagnostic tests performed at/or near point of care
microscopy and rapid diagnostic test for malaria (Plasmodium species)
HIV rapid diagnostic test/s (African sites)
blood culture and antimicrobial susceptibility testing
urine dipstick and culture (small children and older patients with urinary tract infection symptoms) 
mycobacterial blood culture (HIV infected African adults) 
urinary lipoarabinomannan rapid test (uLAM) to detect Mycobacteria tuberculosis (HIV infected African adults)
cryptococcal antigen lateral flow assay
Infection     Reference laboratory for testing or quality control
arboviral infection: chikungunya, dengue, Japanese encephalitis, o’nyong nyong, Zika ELISA, plaque reduction and neutralisation test; Unité des virus émergents, L'Institut de Recherche pour le Développement, France
bacterial/fungal bloodstream or urinary tract infection MALDI-TOF; Southern Community Laboratories and University of Otago (national laboratory), New Zealand
bloodstream Mycobacteria infection subculture, line probe assay or sequencing, & susceptibility testing; Leibniz-Centre for Medicine and Life Sciences, National Reference Center for Mycobacteria, Germany
brucellosis microagglutination test (MAT); National Brucellosis Reference Unit,  Liverpool clinical laboratories, UK
histoplasmosis serum Histoplasma antigen detection; MiraVista Diagnostics, US
leptospirosis microagglutination test (MAT); Institut Pasteur, France
malaria and other blood parasites microscopy of blood smear; Liverpool School of Tropical Medicine, UK
respiratory viruses: influenza and respiratory syncytial virus, other Luminex nucleic acid amplification test; Micropathology Ltd, UK
rickettsial infection: Q fever (Coxiella burnetii), scrub typhus, spotted fever group rickettsioses, typhus group rickettsioses

immunofluorescence antibody test and PCR;

Mahidol-Oxford Tropical Medicine Research Unit, Thailand; and Australian Rickettsial Reference Laboratory
Who we are
Who we are FIEBRE
Laos welcome meeting photo

Meet the team

LSHTM Partner teams Social science team

Prof David Mabey, Principal Investigator
Dr John Bradley, Co-investigator, Statistician
Victoria Gould, Research Assistant
Dr Heidi Hopkins, Co-investigator, Scientific Programme Coordinator
Eulalia Iglesias, Project Co-ordinator 
Sham Lal, Co-investigator, Electronic Data Management System
Michael Lawrence, Programme Manager 
Ruth Lorimer, Communications Officer 
Dr Chrissy Roberts, Co-investigator, ODK specialist and Laboratory Lead 
Dr Shunmay Yeung, Co-investigator, Paediatric Lead

Prof Quique Bassat, ISGlobal, Principal Investigator
Prof John Crump, University of Otago, Principal Investigator
Prof David Lalloo, LSTM, Principal Investigator
Dr Mayfong Mayxay, LOMWRU, Principal Investigator
Prof Elizabeth Ashley, LOMWRU, Co-investigator
Prof Paul Newton, University of Oxford, Co- investigator
Prof Katharina Kranzer, BRTI, Principal Investigator

Prof Clare Chandler, Co-investigator, Social Science Lead
Dr Justin Dixon, Co-investigator, Social Scientist
Dr Coll Hutchison, Co-investigator, Social Scientist
Eleanor MacPherson, Social Science Lead, Malawi (LSTM)
Yuzana Khine Zaw, PhD Student, Myanmar
Salome Manyau, Social Science Lead and PhD Student, Zimbabwe

For more details about each country team and the organisations involved see the Where we work section.

Watch our team in action 

Find out what is really involved in FIEBRE by watching our team members explain their work.

Prof Katharina Kranzer, Principal Investigator, Zimbabwe Prof Clare Chandler, Social Science Lead
Dr Justin Dixon, Social Science Co-ordinator Yuzana Khine Zaw, PhD Student, Myanmar
Dr Shunmay Yeung, Paediatric Lead Dr Mayfong Mayxay, Principal Investigator, Laos

Prof Quique Bassat, ISGlobal, Principal Investigator

Joseph Chipanga, BRTI, Database Administrator

Dr Vilayouth Phimolsarnnousith, LOMWRU

Mabvuto Chimenya, Lead nurse, MLW

Dr Pio Vitorino, CISM Dr Somvai Singha, LOMWRU
Dr  Wamaka Msopole, Malawi Felina Mhangami, Zimbabwe
Molly Sibanda, Zimbabwe Laos team - summary of activities

 

Study governance

An External Advisory Committee (EAC) has been established to provide scientific oversight of the FIEBRE study. The members of the EAC are:

Prof Chris Whitty (Chair), Chief Medical Officer for England & Professor of Public and International Health, London School of Hygiene & Tropical Medicine, UK
Dr David Meya, Associate Professor, College of Health Sciences, Makerere University, Uganda
Dr T Jacob John, Professor Emeritus, Christian Medical College, (CMC) Vellore, India
Dr Amanda Walsh, Senior Scientist, Emerging Infections and Zoonoses, National Infection Service, Public Health England, UK

Where we work
FIEBRE study sites

FIEBRE is funded by the  UK Foreign, Commonwealth and Development Office. It is a multi-centre study conducted by the LSHTM, Liverpool School of Tropical Medicine, Barcelona Institute for Global Health (ISGlobal), Universities of Oxford and Otago, and partner institutions in Lao PDR, Malawi, Mozambique and Zimbabwe, and collaborating reference laboratories.

Partners

Country partners

Laos

Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU)

The Mahidol Oxford Tropical Medicine Research Unit (MORU) develops effective and practical means of diagnosing and treating malaria and other neglected diseases such as melioidosis, typhus, TB and leptospirosis. MORU was established in 1979 as a research collaboration between Mahidol University (Thailand), Oxford University (UK) and the Wellcome Trust UK. It is a network of a diversity of subunits including the Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Lao PDR (LOMWRU). This is a small clinical tropical medicine research group based at Mahosot Hospital, Vientiane. LOMWRU builds diagnostic, clinical and research capacity to help improve global, regional and Lao public health. LOMWRU’s main areas of research interest are in the diagnosis, epidemiology and treatment of malaria, rickettsial infections, leptospirosis, melioidosis, community-acquired septicaemia, central nervous system infections, the causes of acute fevers and public health aspects of medicine quality problems.  

The main study site is Vientiane provincial hospital, a 100-bed hospital approximately 70 km from Mahosot Hospital. The team consists three study doctors and two laboratory technicians. The principal investigator is Assoc Prof Mayfong Mayxay with Dr Elizabeth Ashley and Prof Paul Newton as co-investigators.

Malawi

Malawi-Liverpool Wellcome Trust Research Programme (MLW)

The Malawi site is in Chikwawa district in the southern region of Malawi. Chikwawa district is 5,000 km2 with a population of 350,000 and is served by Chikwawa District Hospital.  The study is taking place in Chikwawa District Hospital and a second site at St Montfort Hospital, Ngabu 30 km away has been opened up to help increase inpatient recruitment. 

The work is based out of the Malawi-Liverpool Wellcome Trust Clinical Research Programme (MLW) . Established in 1995, MLW is an internationally-recognised health research institution led by Malawian and international scientists with the aim of improving the health of people in sub-Saharan Africa. MLW is built around laboratories, located at Queen Elizabeth Central Hospital, in Blantyre.  

The principal investigator is Prof Nicholas Feasey and the study doctor is Dr Ed Green.   

Mozambique

Centro de Investigacao em Saude de Manhica (CISM)

In Mozambique, FIEBRE is coordinated by the Centro de Investigação em Saúde da Manhiça (CISM) in collaboration with the Barcelona Institute of Global Health (IS Global). 

CISM was established in 1996 with the objective of conducting biomedical research in those diseases that affect the most poor and vulnerable. The Centre includes a fully equipped laboratory including parasitology, haematology, biochemistry, microbiology, (including biosafety level III premises), molecular biology (including PCR and RT-PCR) and immunology. CISM has been running a Demographic Surveillance System (DSS) since 1996, covering the whole district’s population and it set up a morbidity surveillance system at Manhiça District Hospital (MDH) in 1998. Overall, data on over 70,000 paediatric admissions and more than 1.2 million outpatient visits have been collected in the past 18 years. CISM’s other activities include: malaria screening, microbiological surveillance; pneumonia surveillance and conducting studies on issues with an important impact on public health policies in the country. 

The study is being conducted in the district of Manhiça (population 182,000 inhabitants, 2300 km2), a rural area located 90 km away from the capital Maputo. MDH acts as the referral health facility for the area. The study is also working at the Hospital Geral José Macamo in Maputo.

The study’s Principal Investigator at the site is Professor Quique Bassat, supported by co-investigators  Dr Marta Valente and Dr Pio Vitorino, in addition to a larger team of Mozambican-based staff: Dr Nelson Tembe;  Dr Sozinho Acácio; Dr Ajanovic Andelic, Campos Mucasse (Project manager); Vânia Afuale (Project assistant); Humberto Mucasse (Field coordinator); Teodimiro Matsena (Data manager); Anelsio Cossa (Laboratory coordinator); Manuel Muamede (Adult nurse coordinator); and Ilídio Cherinda (Paediatric nurse coordinator).

Zimbabwe

Biomedical Research and Training Institute (BRTI)

The researchers in Zimbabwe are based at the Biomedical Research and Training Institute (BRTI) in Harare. Established in 1995, the BRTI provides effective and professional research facilities including laboratory facilities for molecular diagnostics, micro-biology, serology, TB and immunology. BRTI aims to improve health and quality of life in Africa through conducting research and training. Its role is to provide the infrastructural support that researchers in all aspects of health need to become effective in influencing policy. 

The study site incorporates major hospitals in Harare (urban setting) Harare Central Hospital (HCH) and Chitungwiza Hospital. These hospitals have both inpatient and outpatients care of all age groups with patients referred from local clinics and provincial hospitals. The hospitals serve urban and peri-urban communities in southern Harare. In addition, outpatients are being recruited from Glen View and Rutsanana polyclinics in south-western Harare.  

The BRTI team is led by Dr Katharina Kranzer (Principal investigator) with Professor Rashida Ferrand (Co-principal investigator) and comprises: Dr Ioana Olaru (Study coordinator), Ethel Dauya (Field manager), Tsitsi Bandason (Data manager), Salome Manyau (Social science lead), Beauty Makamure (Laboratory manager) and Tendai Muchena (Administrator). Partners include the Department of Medicine and Paediatrics at Harare Hospital and Chitungwiza Hospital, the University of Zimbabwe and Harare City Health Services.

Updates
Updates List Block
Detecting bloodstream and urinary tract infections and antimicrobial resistance

Bloodstream infection is a major public health burden worldwide, resulting in significant patient morbidity and mortality. Many different types of microorganisms can cause bloodstream infections, and the causes vary widely across the world.

Bacterial and fungal infections can cause fever. Blood cultures are performed on all study patients. Urine cultures are performed for patients under 2 years of age and for older patients with symptoms of urinary tract infection. Blood and urine cultures are performed at the study sites. Laboratory staff at the study sites identify bacteria or fungi isolated from positive cultures, perform antimicrobial susceptibility testing (for bacteria), and report the results to the patient’s clinical team to assist with clinical management. For external quality assurance, each isolate is then shipped to Southern Community Laboratories (SCL), Dunedin, New Zealand. SCL is an IANZ-accredited diagnostic laboratory that provides pathology testing services to hospital and community providers in the South Island of New Zealand.

Quality assurance testing procedure at SCL:

  • Isolates are identified by matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF-MS) and/or 16s rRNA gene sequencing.
  • Antimicrobial susceptibility testing is performed and interpreted as per the European Committee on Antimicrobial Susceptibility Testing (EUCAST).
  • Further phenotypic susceptibility testing methods to detect epidemiologically important mechanisms of resistance (eg production of extended spectrum beta-lactamases or carbapenemases).
API test kit and blood stain plates

API test strip and blood culture plate in LOMWRU laboratory, Laos

Diagnosing histoplasmosis

Histoplasmosis is a serious fungal infection. Mild forms of histoplasmosis cause no signs or symptoms; but severe infections can be life-threatening particularly for those with weaker immune systems. It is a major cause of morbidity and mortality for people living with HIV. There’s little reliable surveillance data worldwide, especially in low-resource settings, therefore it is difficult to estimate its true burden and geographic distribution.

Serum samples from FIEBRE participants are shipped to MiraVista Diagnostics. Serum samples received at MiraVista Diagnostics are inventoried and stored at -80°C. MiraVista Diagnostics performs antigen detection by enzyme immunoassay (EIA) to determine the quantitative concentration of Histoplasma antigen in the serum samples. Prior to testing, samples are thawed, treated with EDTA and aliquoted into tubes to be tested in the MVista® Histoplasma Antigen EIA using Tecan liquid handlers, in 96 well plates. At the completion of each assay controls are verified and calculations performed. Following testing results are provided to the study coordinator for evaluation.

Testing for arboviruses

The frequency and scale of arboviral epidemics and the extent of their geographic spread have progressively increased over time becoming a major public health concern in the world. Infections by arboviruses clinically manifest in a range of presentations from asymptomatic infections to fever with more or less severe symptoms which need to be identified and treated correctly. 

To discover to what extent FIEBRE sites are affected by arboviral diseases all FIEBRE participant, patients and control serum samples, are tested for: dengue virus, chikungunya virus, Zika virus, Japanese encephalitis virus (for Laos) and o’nyong nyong virus (African sites). The confirmatory arbovirus testing takes place at the French National Centre of Reference of Arboviruses, Unité des virus Emergents (UVE) affiliated with Aix-Marseille University, Institut National de la Santé Et de la Recherche Médicale (INSERM) and Institut de Recherche pour le Développement (IRD).

UVE tests the acute (day 0) and convalescent (day 28) sera. This comprises one sample at day 0 for controls and two samples to test at D0 and D28 for patients.

Processes at UVE:

  • samples scanned and recorded onto database to sort the samples per participant, pairing the D0-D28 samples and recording patient type/date sample taken
  • tubes decapped and transferred to 96-well microplate ready for extraction or ELISAs
  • serum tested for viral RNA using real-time reverse transcription polymerase chain reaction (RT-PCR)
  • specific ELISAs used to look for serological evidence of infection
  • fully automated ELISA test kits processed - 15 plates in a single run
  • further testing with microneutralisation is conducted to distinguish between any co-detection or cross reaction
  • once results validated automatically exported to database.
ELISA 15-well plate
Screening for respiratory viruses

The majority of respiratory tract infections are caused by a variety of commonly occurring viruses. As patients often present with a number of overlapping signs and symptoms it can be difficult to determine the source of the infection by clinical presentation alone. Therefore in order to detect the prevalence of respiratory infections within the study population, pharyngeal swabs are collected from all participants and controls to be screened diagnostically.

At each site participant swabs are frozen and stored in -80°C freezer. The specimens are shipped to LSHTM then on to Micropathology Ltd.

Micropathology Ltd performs diagnostic respiratory screening on the participant swabs to determine which respiratory viruses are present. The Luminex panel screens for: influenza A and B and respiratory syncytial virus (the multiplex assay also detects human metapneumovirus, parainfluenza virus types 1, 2, 3 and 4, adenoviruses, rhinoviruses, enterovirus, parechovirus, bocavirus, Mycoplasma pneumoniae, and other potential respiratory pathogens).

Screening procedures:

  • Throat swabs from study participants are received at Micropathology Ltd on dry ice. The standard specimen is a dry, flocked cotton throat swab head in a 2 ml tube. These are inventoried and transferred to -80◦C storage. 
  • Specimens are thawed and racked according to LSHTM electronic lists. Working in a BSL II biosafety cabinet, 500 uL of buffer is added to resuspend the dry throat swabs. The tubes are recapped and vortexed thoroughly to ensure any pathogen material is resuspended in the swab media. 
  • An extraction protocol is performed to purify and recover DNA and RNA from 200 uL of swab media. Micropathology Ltd scientists have worked with experts at Promega to optimise a highly effective extraction chemistry. The custom Promega chemistry is run in 96-well format using an open KingFisher™ Flex robotic platform (Thermo Scientific™). 
  • Diagnostic respiratory screening is performed using the NxTAG® Respiratory Pathogen Panel (IVD) from Luminex (RPP). The RPP kit allows for the simultaneous detection of 18 viral and 3 bacterial gene targets. The bench process involves an initial PCR and bead hybridisation phase on a thermal cycler. Analysis of bead-associated pathogen amplicon is performed using a Luminex MagPix® instrument. A comprehensive report is prepared.
  • Output files are exported and reviewed by Micropathology Ltd scientists. Any specimens positive for the NxTAG® combined Rhinovirus/Enterovirus output undergo a further nested PCR test for species differentiation.
  • All specimens taken from 1 January 2020 undergo a separate in-house PCR test for SARS-CoV-2 (UKAS accredited test).
  • Data from each site is collated and quality controlled at Micropathology Ltd. Once screening for all participants at a site is complete, the results are made available to the consortium.
laboratory manager working on samples under a hood
Microbiology manager preparing some respiratory samples in a BSL II hood
Detecting TB and drug resistance

Mycobacterial bloodstream infections are a rare, but serious, cause of fever. HIV-positive people are more at risk of mycobacterial infections. A mycobacterial blood culture is performed for inpatients aged >15 at study sites where HIV prevalence in the general adult population is known to be >1% (Malawi [outpatients also included], Mozambique and Zimbabwe).

Site laboratory staff identify the mycobacteria positive cultures; all results are reported to the patient’s clinical team. For external quality assurance, a sample of each isolate is then shipped directly to the National Reference Center (NRC) for Mycobacteria, Germany, a Supranational Reference Laboratory (SRL) of WHO. The NRC participates in the coordination of measures in the fight against and the surveillance of tuberculosis (TB). It examines approximately 12,000 samples a year for the detection and identification of mycobacteria as well as for susceptibility testing.

Process on site (see SOPs):

  • where sites do not have access to a Bactec machine, Bactec bottles incubated manually (bottles contain a sensor at the bottom that changes fluorescence with increasing CO2 concentration):
    • bottles examined on day 3, 4 or 5 then weekly for six weeks
    • compare fluorescence with a positive control bottle
    • return negative bottles (no fluorescence) for further incubation
    • if positive, small volume of culture supernatant removed to stain
    • mycobacteria observed, grown and identified
    • positive mycobacterial blood culture cryopreserved in duplicate, one for NRC one for study site

Quality assurance testing procedure at NRC involves:

  • differentiation of mycobacteria by means of different molecular methods based on nucleic acid amplification techniques in a stepwise manner
  • susceptibility testing of all mycobacteria species in liquid media
  • detection of mutations associated with resistance against first- and secondline drugs

More details about the scope of NRC’s work is available on their website.

Mycobacteria Growth Indicator equipment and tubes
Testing for malaria

Even though rapid diagnostic testing (RDT) for malaria has revealed that most febrile patients in Africa and Asia do not have malaria, FIEBRE still needs to confirm this by testing all participants at the point of care. In order to standardise diagnostic testing further external quality confirmatory (EQC) assessment of site results are performed at the Clinical Diagnostic Parasitology Laboratory (CDPL) at Liverpool School of Tropical Medicine.  

Many stages are involved in testing for malaria starting from the point when a patient is enrolled on site to the final results being logged on the database at LSHTM: 

  • mRDT performed at patient enrolment
  • Positive results reported to clinical team
  • Thick and thin blood smear prepared on microscopic slides
  • Slides double-read for malaria only (presence or absence, density and species) by in-country microscopists who have achieved expert status in the WHO (or similar) qualification scheme.
  • In-country microscopists read the smears for all mRDT-positive and 10% of mRDT-negative study participants. FIEBRE uses a combination mRDT that detects two different parasite antigens: histidine-rich protein 2 (HRP2) which is produced only by Plasmodium falciparum parasites; and pan-specific Plasmodium lactate dehydrogenase (pLDH) which is produced by all malaria parasite species.
  • Site coordinators select 10% of all slides collected at their site for EQC at the CDPL, to be read for malaria and also for Borrelia spp and other pathogens
  • Slides are received in by the LSHTM team who distribute to the reference laboratories
  • CDPL receive stained thick and thin blood smears where they are checked and catalogued
  • Each slide is read by two Health and Care Professions Council (HCPC) registered biomedical scientists with experience in reading blood smears. They are examined for the presence or absence of malaria, borrelia and any other relevant blood parasites. The smears are read blind without the knowledge of the results from the originating site.
  • Results are recorded for each slide and once complete the data is submitted to the FIEBRE co-ordinator at LSHTM.
rows of malaria slides
Site activity completed, work now concentrating on data analysis and laboratory testing

Site activities essentially finished during 2021 as recruitment ended and sample shipments were despatched. The main work now revolves around team collaboration on data queries and analysis of findings.

The final participant samples (sera, blood, plasma, blood cell pellet, buffy coat, PAXgene tubes, swabs) arrived at LSHTM from Laos and Mozambique in November 2021. Microbiology and mycobacteriology isolates were shipped directly to international reference laboratories in Germany and New Zealand.

FIEBRE enrolled child and adult inpatients and outpatients who presented with fever over ≥24 months. A venous blood sample and pharyngeal swabs were collected from all participants; a urine sample was collected from selected participants. In addition, blood and pharyngeal samples were taken from community controls matched to outpatients by age, gender, residence and month of recruitment. The controls were also surveyed to obtain representative data about treatment seeking and medicine use.

Number of patients enrolled and participant characteristics

  Laos Malawi Mozambique Zimbabwe All sites
Total patients enrolled 1,972 1,766 2,143 1,924 7,805
Female 50% 56% 55% 49% 53%
Male 50% 44% 45% 51% 47%
Aged <15 years 39% 54% 53% 46% 48%
Aged ≥15 years 61% 46% 47% 55% 52%
Outpatient 48% 68% 54% 58% 57%
Inpatient 52% 32% 46% 42% 43%
Total controls 485 908 559 433 2385
FIEBRE at ASTMH 2021

The American Society of Tropical Medicine and Hygiene 2021 Annual Meeting (ASTMH 2021) takes place 17-21 November 2021 virtually.

There are eight FIEBRE-related activities covering all aspects of the study (two talks and six posters [pdf]):

Session 84, Clinical Tropical Medicine: Diagnostics and COVID Sat 20 Nov 8:00 – 9:45 am US EST

Poster Session A Thurs 18 Nov, 11:00 am – 12:30 pm US EST

Poster Session B, Fri 19 Nov, 12:00 – 1:30 pm US EST

Poster Session C, Sat 20 Nov, 11:00 am – 12:30 pm US EST

Join us online to find out more and share your news from the conference.  Tweet @FeverStudies using #TropMed21  

ASTMH conference logo 2021
FIEBRE at African Society for Laboratory Medicine 2021 Conference

Two abstracts from the Zimbabwe team have been accepted as talks for the African Society for Laboratory Medicine 2021 Conference (ASLM 2021).

Mutsawashe Chisenga, FIEBRE medical laboratory scientist, will be presenting on behalf of the team on:

  • Detection of antibiotic activity in urine using a bioassay in samples patients with suspected urinary tract infections presenting to primary care clinics
    Mutsawashe R Chisenga, Forget Makoga, Beauty Makamure, Heidi Hopkins, Ben Amos, Katharina Kranzer, Ioana D Olaru

 

  • The use of InTray COLOREX Screen and ESBL for bacterial identification and ESBL-detection from blood and urine cultures in Harare, Zimbabwe
    Mutsawashe R Chisenga, Forget Makoga, Gwendoline Chimhini, Beauty Makamure, Heidi Hopkins, Katharina Kranzer, Ioana D Olaru

The conference is taking place virtually from 15-18 November 2021. Programme details to follow.

ASLM conference details
Malawi dissemination meetings

The MLW team held two successful local dissemination meetings in a COVID-19-safe format for St Montfort Hospital and Chikwawa District Hospital in mid-May 2021. The meetings were attended by representatives from the hospital management teams, lead clinical officers, district health officers, the matrons, and other members of staff from all sections of the hospitals including clinicians, nurses, anaesthetists and administrators. 

The meetings covered presentations on:

  • Study operations review 
  • Community field work               
  • Scientific and statistical data       
  • Social science key findings

The meetings were very well received and emphasised some basic practice points. Further meetings at a national level will be organised when the reference laboratory results are available later in the year. 

The social science team discussed their research from clinical observations and the focus on cotrimoxazole being the most frequently used drug at the facilities and within the community. 

The key take home messages were: 
•  A limited number of antibiotics are recognised and there are very low stocks of antibiotics in public health clinics – not suggesting that antibiotics are overused everywhere 
•  Health workers are very committed and manage in challenging conditions where essential medicines beyond those provided by the international donor  programme are very limited 
•   Opportunities exist for rapid gains through antimicrobial resistance policy that reflects the context of this limited access and centres on foregrounding care not restricting access to antibiotics.

Malawi dissemination meeting
Malawi concludes recruitment

FIEBRE finished recruiting patients in Malawi on 31 March 2021. Follow up activities will continue during April.

Congratulations to everyone involved in contributing to the study in both Blanytre and Chikwawa. Many thanks to the clinical, laboratory and technical staff, community engagement team, administrators, data scientists, patients and the local community.  

The first patient was enrolled on 4 July 2018 at Chikwawa District Hospital (CDH). In total, 1765 patients were recruited (over 6200 screened) and the team reached the outpatient recruitment target of 600 for both adults and children. Control recruitment was very effective at 98% and 28-day follow up was high at 91%. This reflects the dedication of the community engagement team.

Initially, FIEBRE started at CDH and second site opened at St Montfort Mission hospital in May 2019 in order to help increase inpatient recruitment.

Community engagement was integral to the study. FIEBRE was helped by long-established community sensitisation work to research in the area. There's been particular interest and concern about the amount of blood taken. These issues are addressed by the team through their continued commitment to working with the local community.
 
The team faced many challenges such as flooding, Cyclone Idai in March 2020, the COVID-19 pandemic and a high number of eligible patients declining to participate for a variety of reasons including:

  • Concern about donating blood/large volume when anaemic (severe anaemia is commonplace in Chikwawa)
  • Traditional beliefs about losing and sharing blood
  • Wanting to seek consent from husband or elder

These sensitive issues were addressed over the course of the study by many staff and patient education and sensitisation sessions explaining the safety and desirability of blood testing in patients who might be suffering from infections. On the whole, these efforts were bearing fruit with increased inpatient recruitment until the arrival of COVID-19 in the spring of 2020.

The COVID-19 pandemic had a considerable impact on the study’s activities; national and institutional restrictions were imposed which slowed down enrolment and limited activities. Although personal protective equipment was available for staff, and infection control measures were in place, with masks and screening at the hospital entrance, people were reluctant to seek healthcare due to a fear of COVID-19 transmission in health centres and of being diagnosed and being sent to a COVID-19 treatment centre.

Despite all the challenges, the FIEBRE team have been able to help support and add to the overall level of care and treatment in the area by providing clinical microbiology services in CDH and SMH for the first time and diagnosing HIV and TB in patients who might otherwise have slipped through the net. FIEBRE staff followed up any positive blood cultures immediately and advised clinicians on antibiotic choice and length of treatment. The study hopes to leave a legacy whereby this service will be continued by the MLW core team.

Many of the FIEBRE team members in Malawi were undertaking their first research role. It has been rewarding to see the team develop and no surprise to see team members grow into more senior roles or be taken up by other studies, research support units or research institutions in Malawi.

Images of MLW team working on FIEBRE

Images of the MLW team working in the hospital and field (2018-21)

Mozambique finishes recruitment

FIEBRE finished recruiting patients in Mozambique on 26 February 2021. Control and follow up activities will continue throughout March.

CISM began enrolling adult patients at Manhiça Health Research Centre on 13 March 2019 after paediatric recruitment started in November 2018.  A second site, Hospital Geral José Macamo in Maputo, was opened on 28 November 2019. This helped boost inpatient numbers significantly and improved the patients’ care with access to blood culture results.

In total, 2136 patients were enrolled during this period; the highest number of participants of all the sites. This is a great achievement. The team reached the outpatient child recruitment target of 600. The site is the only one which has recruited participants who tested positive for SARS-CoV-2.

Congratulations to everyone involved in contributing to the study’s success - the clinical, laboratory and technical staff, administrators, data scientists, patients and local communities.

Initially, there were some clinical issues which included difficulty in taking blood and urine samples from children. Day 28 follow up has been quite problematic with a high rate of refusals and some loss to follow up due to migration (families moving for work), accessibility during the rainy season and local perception of loss of blood. Blood extraction in particular is a sensitive issue and can be associated with ill-health especially among children. Moreover, some healthy people were not interested in participating as controls.

The COVID-19 pandemic had a considerable impact on the study’s activities; inpatient recruitment was closed down in Maputo and community activities were stopped during the first wave. National and institutional restrictions were imposed which slowed down enrolment and limited field activities. 

On a personal level, many of the clinical staff were infected with SARS-CoV-2 although none severely. This was a critical period during which infection protection measures and disinfection of working areas were reinforced.  It was a stressful time for all the staff and their families. Despite these COVID-19 issues along with rising patient numbers and infections in the community, the team managed to continue working throughout.

In spite of the many challenges, the team’s hard work and dedication has contributed greatly to the clinical diagnostic capacity at these hospitals through access to rapid diagnostic tests and laboratory cultures. This has benefitted both clinicians and patients, enabling clinicians to use the information to make accurate diagnoses and therefore quickly help provide the right treatment.

 Listen to Justina Bramugy and Campos Mucasse talking about their experience on FIEBRE.

Collage of hospital images and team photos from Mozambique
Laos dissemination meeting

The LOMWRU team returned to the study site at Vientiane Provincial Hospital on 19 January 2021 for the main dissemination meeting. The preliminary results of the study, some microbiology data and early reference laboratory results were presented to clinicians, nurses and laboratory technicians for feedback. 

The 2-hour session was chaired by Dr Siho Sengsavang, Deputy Director of Vientiane Provincial Hospital and Prof Mayfong Mayxay, Vice President of the University of Health Sciences, LOMWRU Head of Field Research and local PI who facilitated a discussion after talks by Dr Manophab Luangraj and Dr Vilayouth Phimolsarnnousith.

Watch a video summarising the study's activities.

Photos of Laos dissemination meeting
Zimbabwe dissemination meetings

The BRTI team held a series of successful dissemination meetings following the completion of recruitment in Zimbabwe on 30 September 2020,

Preliminary clinical results were presented at the polyclinics during October and November for the nurses and staff involved in FIEBRE.  These received interesting feedback and led to discussions about effective antimicrobials and antimicrobial resistance.

A research dissemination meeting for major stakeholders at a policy level took place in Harare (with online attendees) on 30 November. The meeting covered several projects as well as FIEBRE and ARGUS: B-GAP, FAST and BREATHE trial

Representatives from the Ministry of Health and Childcare, Harare Central HospitalParirenyatwa Hospital, Medicines control authority of Zimbabwe, Zimbabwe College of Public Health Physicians, National Microbiology Reference Laboratory, MSF, UNAIDS and many other institutions participated in the meeting. 

The FIEBRE and ARGUS presentations are available:

Zimbabwe dissemination presentations
Recruitment finishes in Laos

Recruitment of FIEBRE participants ended in Laos on 31 October 2020. The LOMWRU team started enrolling patients on 9 October 2018 at Vientiane Provincial Hospital. In total, 1961 participants were enrolled during this period. The team reached the adult recruitment target of 600 for both in- and outpatients.

Congratulations to everyone involved in contributing to the study’s success - the clinical and laboratory staff, hospital, participants and local communities. 
  
The first set of samples were shipped to LSHTM in early 2020 and are now at international reference laboratories awaiting diagnostics. Analysis of these samples will produce the first results of the study aside from preliminary data from point-of-care tests carried out on site. The dried blood spots from Laos are also currently being used for the MOS-DEF biomarker project. 


The team faced clinical and logistical challenges including difficulty in taking blood samples from children and travelling long distances to recruit controls (healthy people who were not always interested in taking part). The team continued working throughout the COVID-19 epidemic despite national restrictions which slowed down enrolment and limited field activities. 
  
FIEBRE has helped with the clinical diagnostic capacity and treatment of infectious diseases in the local community, as blood culture and other tests were not available in the hospital previously. The information collected by the study may contribute to the development of treatment guidelines for fever and antibiotic stewardship in the future, especially in settings where there's limited laboratory diagnostics or little data available. 
 

Images of FIEBRE in Laos
FIEBRE at ASTMH 2020

The American Society of Tropical Medicine and Hygiene 2020 Annual Meeting (ASTMH 2020) took place 15-19 November 2020 virtually.

There are four FIEBRE-related activities (two presentations and two posters):

Join us online to find out more and share your news from the conference. Tweet @FeverStudies using #TropMed20  

ASTMH Annual Meeting 2020 banner
    Recruitment ends in Zimbabwe

    Participant recruitment in Zimbabwe finished on 30 September 2020. Many congratulations to everyone involved in contributing to the success of the study - the collaborators, participants and local communities.  

    Zimbabwe was the first FIEBRE site to start operating in June 2018. In total, 1923 participants were enrolled during this period. FIEBRE recruited patients presenting with fever to three major hospitals and three polyclinics in Harare.

    The team at Biomedical Training and Research Institute (BRTI) continued working through outbreaks of cholera and typhoid, political and economic difficulties, despite all these challenges the outpatient adult target (of 600) was reached and many patients received life-saving diagnostics and treatment that otherwise they may not have been able to access. Through the study, a large number of patients with typhoid fever were diagnosed and received effective treatment. In addition, patients with other life-threatening infections such as tuberculosis, malaria and cryptococcal meningitis could be diagnosed.

    Photos of Zimbabwe

    Photos of team members working in Harare (before and during COVID-19)

    Series of papers about the causes of non-malarial febrile illnesses globally published in BMC Medicine

    A series of papers by Infectious Diseases Data Observatory (IDDO) that set out to explore the global distribution of infections that cause non-malarial febrile illness (NMFI) has been published in BMC Medicine.

    The series was a collaboration by scientists and researchers from institutions across the world (including FIEBRE Pis from LSHTM, LOMWRU and University of Otago) who conducted large-scale systematic reviews of published literature to map the cause of febrile illness, once malaria had been excluded. Historically, malaria was assumed to be the cause of fever, however, the advent of rapid diagnostic tests, combined with intensified malaria control activities over the last decade, has substantially reduced incidence rates and it is now clear that most acute fever cases are of non-malaria aetiology. 

    The results of these systematic reviews, covering Africa, Latin America, and Southern and South-Eastern Asia, have been incorporated into an open-access online database that supports an interactive map that can filter data by country, microorganism type, patient age, sample type, pathogen family, genus and species, study year, geographic region and sub-region.

    The collection of articles are available on BMC Medicine. Read more details on the IDDO website

    Non-malarial febrile illness: a systematic review of published aetiological studies and case reports from Africa, 1980–2015
    Jeanne Elven, Prabin Dahal, Elizabeth A. Ashley, Nigel V. Thomas, Poojan Shrestha, Kasia Stepniewska, John A. Crump, Paul N. Newton, David Bell, Hugh Reyburn, Heidi Hopkins and Philippe J. Guérin

    Febrile illness mapping—much of the world without data and without evidence-based treatments
    Paul N. Newton and Philippe J. Guerin

    When fever is not malaria in Latin America: a systematic review
    José Moreira, Janaina Barros, Oscar Lapouble, Marcus V. G. Lacerda, Ingrid Felger, Patricia Brasil, Sabine Dittrich and Andre M. Siqueira

    Non-malarial febrile illness: a systematic review of published aetiological studies and case reports from Southern Asia and South-eastern Asia, 1980–2015
    Poojan Shrestha, Prabin Dahal, Chinwe Ogbonnaa-Njoku, Debashish Das, Kasia Stepniewska, Nigel V. Thomas, Heidi Hopkins, John A. Crump, David Bell, Paul N. Newton, Elizabeth A. Ashley and Philippe J. Guérin

    Study documents

    Study documents are available from this page, including the study protocol and standard operating procedures (SOPs). For access to other study materials, including data collection tools (case report forms, CRFs), please contact fiebre@lshtm.ac.uk

    LSHTM Research acts as an open access repository for FIEBRE publications: https://doi.org/10.17037/PUBS.04652739

    You are welcome to contact us with any questions or to request documents that are not yet published.

    Protocol

    Protocol  version

    Description

    v1.0  (pdf)

    FIEBRE central protocol version 1.0, 1 Oct 2017 – the study protocol originally approved and implemented at study sites 
    v3.0 (pdf) FIEBRE central protocol version 3.0, 31 Oct 2018 – supersedes all previous versions
    v4.0 (pdf) FIEBRE central protocol version 4.0, 28 Feb 2019 – supersedes all previous versions
    v4.2 (pdf) FIEBRE central protocol version 4.2, 15 Apr 2019 – supersedes all previous versions
      Social science forms
      Zimbabwe social science protocol (pdf)
      Drug bag questionnaire data collection form (pdf)
    SOP Description
     F.01 (pdf) Study enrolment: Patient recruitment, screening and enrolment 
    F.02 (pdf) Informed consent/assent procedures 
    F.03a (pdf) Completion of clinical CRF for child patients (aged <15 years) on Day 0 
    F.03b (pdf) Completion of clinical CRF for adult patients (aged ≥15 years) on Day 0
    F.04  (pdf) Collection of patient samples on Day 0: venous blood, pharyngeal swabs, and urine 
    F.05 (pdf) Processing of patient samples on Day 0: blood, pharyngeal swabs, and urine 
    F.06a (pdf) Malaria RDT preparation, reading and results recording 
    F.06b (pdf) HIV testing and results recording 
    F.06c (pdf) Processing urinary lipoarabinomannan (LAM) 
    F.06d (pdf) Cryptococcal antigen testing and results recording 
    F.07a (pdf) Blood smear preparation and staining 
    F.07b (pdf) Malaria microscopy: slide reading, recording and internal quality control 
    F.07c (pdf) Selection of slides for external quality control 
    F.08a (pdf) Blood culture preparation, interpretation, and results recording 
    F.08b (pdf) Blood mycobacterial culture preparation, interpretation, and results recording 
    F.08c (pdf) Urine dipstick use and culture preparation, interpretation, and results recording 
    F.09  (pdf) Scheduling a patient’s study follow-up and storage of contact information
    F.10 (pdf) Completion of CRF for patients on Day 28 
    F.11 (pdf) Collection and processing of samples on Day 28: venous blood 
    F.12 (pdf) Selection, recruitment, and enrolment of community controls 
    F.13 (pdf) Completion of CRF for controls
    F.14 (pdf) Collection and processing of samples from controls: venous blood, pharyngeal swabs 
    F.15a (pdf) Storage and shipping of dried blood spots from study sites to LSHTM 
    F.15b (pdf) Sample storage at sites and selection and preparation for shipping participant samples (whole blood, plasma, serum, blood cell pellet, buffy coat, PAXgene tubes and NP/OP swabs) 
    F.15c (pdf) Selection, preparation, and shipping of bacterial and fungal isolates to the microbiology reference laboratory
    F. 15d (pdf)

    Preparation, and shipping of mycobacterial isolates to the reference laboratory

    F.15e (pdf) Lysis of bacterial and fungal cells for DNA
    F.15f (pdf) Shipping FIEBRE samples from LSHTM to reference laboratories
    F.15g (pdf) Receiving and storing samples at LSHTM
    F.16  (pdf) Identifying and reporting serious adverse events (SAEs) 
    F.19  (pdf) Collection and storage of PAXgene tube 
    F.20 (pdf) Processing and storage of FIEBRE samples at LSHTM
    F.21 (pdf) Performing the Direct Agglutination Test (DAT) for Leishmania
    FD.01  (pdf) Procedure to request updates to eCRF forms 

     

    Publications

    Publications, research and data produced and contributed to by FIEBRE team members is available including:

    • Journal articles
    • Conferences, workshops and presentations
    • Books, chapters and sections
    • Seminars and lectures
    • Media
    • Blogs
    Scientific Papers
    Clinical management and outcomes of acute febrile illness in children attending a tertiary hospital in southern Ethiopia
    Techalew Shimelis, Susana Vaz Nery, Birkneh Tilahun Tadesse, Adam W. Bartlett, Fitsum W/Gebriel Belay, Gill Schierhout, Sabine Dittrich, John A. Crump & John M. Kaldor
    2022
    BMC Infect Dis 22, 434 (2022). 10.1186/s12879-022-07424-0
    Antibiotics and the biopolitics of sex work in Zimbabwe
    Salome Manyau, Justin Dixon, Norest Mutukwa, Faith Kandiye, Paula Palanco Lopez, Eleanor E. MacPherson, Rashida A. Ferrand & Clare I. R. Chandler
    2022
    Medical Anthropology; 10.1080/01459740.2022.2037083
    Utility of InTray COLOREX Screen agar and InTray COLOREX ESBL agar for urine culture in the Lao PDR
    Tamalee Roberts, Joy Silisouk, Davanh Sengdatka, Bountoy Sibounheuang, Ranoy Seljuk, Xao Vang, Amphonesavanh Sengduangphachanh, Viengmon Davong, Manivanh Vongsouvath, Nada Malou, Cecilia Ferreyra, Elizabeth A. Ashley, Andrew J. H. Simpson
    2022
    JAC-Antimicrobial Resistance, Volume 4, Issue 1, March 2022, dlac006
    Understanding antimicrobial resistance through the lens of antibiotic vulnerabilities in primary health care in rural Malawi
    Eleanor E. MacPherson, Joanna Reynolds, Esnart Sanudi, Alexander Nkaombe, Chimwemwe Phiri, John Mankhomwa, Justin Dixon & Clare I.R. Chandler
    2021
    Global Public Health; 10.1080/17441692.2021.2015615
    Antibiotic stories: a mixed-methods, multi-country analysis of household antibiotic use in Malawi, Uganda and Zimbabwe
    Justin Dixon, Eleanor Elizabeth MacPherson, Susan Nayiga, Salome Manyau, Christine Nabirye, Miriam Kayendeke, Esnart Sanudi, Alex Nkaombe, Portia Mareke, Kenny Sitole, Coll de Lima Hutchison, John Bradley, Shunmay Yeung, Rashida Abbas Ferrand, Sham Lal, Chrissy Roberts, Edward Green, Laurie Denyer Willis, Sarah G Staedke, Clare I R Chandler
    2021
    BMJ Global Health 2021;6:e006920. doi:10.1136/bmjgh-2021-006920
    Sexually transmitted infections and prior antibiotic use as important causes for negative urine cultures among adults presenting with urinary tract infection symptoms to primary care clinics in Zimbabwe: a cross-sectional study
    Ioana D Olaru, Mutsawashe Chisenga, Shunmay Yeung, David Mabey, Michael Marks, Prosper Chonzi, Kudzai PE Masunda, Anna Machiha, Rashida A Ferrand, Katharina Kranzer
    2021
    BMJ Open 2021;11:e050407. doi: 10.1136/bmjopen-2021-050407
    A Novel Framework for Phenotyping Children With Suspected or Confirmed Infection for Future Biomarker Studies
    Ruud G. Nijman, Rianne Oostenbrink, Henriette A. Moll, Climent Casals-Pascual, Ulrich von Both, Aubrey Cunnington, Tisham De, Irini Eleftheriou, Marieke Emonts, Colin Fink, Michiel van der Flier, Ronald de Groot, Myrsini Kaforou, Benno Kohlmaier, Taco W. Kuijpers, Emma Lim, Ian K. Maconochie, Stephane Paulus, Federico Martinon-Torres, Marko Pokorn, Sam T. Romaine, Irene Rivero Calle, Luregn J. Schlapbach, Frank J. Smit, Maria Tsolia, Effua Usuf, Victoria J. Wright, Shunmay Yeung, Dace Zavadska, Werner Zenz, Michael Levin, Jethro A. Herberg, Enitan D. Carrol and the PERFORM consortium (Personalized Risk assessment in febrile children to optimize Real-life Management across the European Union)
    2021
    Front. Pediatr. 10.3389/fped.2021.688272
    Negotiating authoritarian law and (dis)order: medicines, drug shops, and regulators in a poor [SE Asian urban] suburb
    Yuzana Khine Zaw, Ja Seng Bawk, Coll De Lima Hutchison
    2021
    Critical Public Health July 2021, 10.1080/09581596.2021.1943314
    Anticipating the future: prognostic tools as a complementary strategy to improve care for patients with febrile illnesses in resource-limited settings
    Arjun Chandna, Jennifer Osborn, Quique Bassat, David Bell, Sakib Burza, Valérie D’Acremont, B Leticia Fernandez-Carballo, Kevin C Kain, Mayfong Mayxay, Matthew Wiens, Sabine Dittrich
    2021
    BMJ Global Health 2021;6:e006057
    Evaluation of the InTray and Compact Dry culture systems for the diagnosis of urinary tract infections in patients presenting to primary health clinics in Harare, Zimbabwe
    Ioana D. Olaru, Wael Elamin, Mutsawashe Chisenga, Nada Malou, Jeremie Piton, Shunmay Yeung, Rashida A. Ferrand, Heidi Hopkins, Prosper Chonzi, Kudzai P. E. Masunda, Portia Manangazira, Cecilia Ferreyra & Katharina Kranzer
    2021
    Eur J Clin Microbiol Infect Dis (2021) doi.org/10.1007/s10096-021-04312-4
    Prevalence of ESBL-producing Escherichia coli in adults with and without HIV presenting with urinary tract infections to primary care clinics in Zimbabwe
    Ioana D Olaru, Rashida A Ferrand, Mutsawashe Chisenga, Shunmay Yeung, Bruce Macrae, Prosper Chonzi, Richard A Stabler, Heidi Hopkins, David Mabey, Kudzai P E Masunda, Katharina Kranzer
    2021
    JAC-Antimicrobial Resistance, Volume 3, Issue 2, June 2021, dlab082
    The association between antimicrobial resistance and HIV infection: a systematic review and meta-analysis
    Olaru ID, Tacconelli E, Yeung S, Ferrand RA, Stabler RA, Hopkins H, Aiken AM, Kranzer K.
    2021
    Clin Microbiol Infect. 2021 Apr 1:S1198-743X(21)00161-0 DOI: 10.1016/j.cmi.2021.03.026
    Molecular Detection of Pathogens in Negative Blood Cultures in the Lao People's Democratic Republic
    Soo Kai Ter, Sayaphet Rattanavong, Tamalee Roberts, Amphonesavanh Sengduangphachanh, Somsavanh Sihalath, Siribun Panapruksachat, Manivanh Vongsouvath, Paul N Newton, Andrew J H Simpson, Matthew T Robinson
    2021
    Am J Trop Med Hyg. 2021 Mar 1:tpmd201348 DOI: 10.4269/ajtmh.20-1348
    Addressing antibiotic use: insights from social science around the world, Project Report
    Tompson, Alice C; Chandler, Clare IR
    2021
    10.17037/PUBS.04659562
    Biomarkers to distinguish bacterial from viral pediatric clinical pneumonia in a malaria endemic setting
    Michael A Gillette, D R Mani, Christopher Uschnig, Karell G Pellé, Lola Madrid, Sozinho Acácio, Miguel Lanaspa, Pedro Alonso, Clarissa Valim, Steven A Carr, Stephen F Schaffner, Bronwyn MacInnis, Danny A Milner, Quique Bassat, Dyann F Wirth
    2020
    Clinical Infectious Diseases, ciaa1843
    Inter-prescriber variability in the decision to prescribe antibiotics to febrile patients attending primary care in Myanmar
    Swe MMM, Ashley EA, Althaus T, Lubell Y, Smithuis F, Mclean ARD
    2020
    JAC Antimicrob Resist. 2021 Jan 19;3(1):dlaa118. PMID: 33506197; PMCID: PMC7814214.
    Prediction of disease severity in young children presenting with acute febrile illness in resource-limited settings: a protocol for a prospective observational study
    Arjun Chandna, Endashaw M Aderie, Riris Ahmad, Eggi Arguni, Elizabeth A Ashley, Tanya Cope, Vu Quoc Dat, Nicholas P J Day, Arjen M Dondorp, Victor Illanes, Joanne De Jesus, Carolina Jimenez, Kevin Kain, Keang Suy, Constantinos Koshiaris, Estrella Lasry, Mayfong Mayxay, Dinesh Mondal, Rafael Perera, Tiengkham Pongvongsa, Sayaphet Rattanavong, Michael Rekart, Melissa Richard-Greenblatt, Mohammad Shomik, Phouthalavanh Souvannasing, Veronica Tallo, Claudia Turner, Paul Turner, Naomi Waithira, James A Watson, Mikhael Yosia, Sakib Burza, Yoel Lubell
    2020
    BMJ Open http://dx.doi.org/10.1136/bmjopen-2020-045826
    Antibiotics, Rational Drug Use and the Architecture of Global Health in Zimbabwe
    Justin Dixon, Salome Manyau, Faith Kandiye, Katharina Kranzer, Clare I.R. Chandler
    2020
    Social Science & Medicine doi.org/10.1016/j.socscimed.2020.113594.
    Antimicrobial Resistance in Gram-negative bacteria from Urinary Specimens: a study of prevalence, risk factors and molecular mechanisms of resistance (ARGUS) in Zimbabwe – a study protocol
    Ioana D. Olaru, Shunmay Yeung, Rashida A. Ferrand, Richard Stabler, Prosper Chonzi, David Mabey, Heidi Hopkins, John Bradley, Kudzai P.E. Masunda, Shungu Munyati, Katharina Kranzer
    2020
    Wellcome Open Res 2020, 5:140 https://doi.org/10.12688/wellcomeopenres.15977.1
    Non-malarial febrile illness: a systematic review of published aetiological studies and case reports from Africa, 1980–2015
    Jeanne Elven, Prabin Dahal, Elizabeth A. Ashley, Nigel V. Thomas, Poojan Shrestha, Kasia Stepniewska, John A. Crump, Paul N. Newton, David Bell, Hugh Reyburn, Heidi Hopkins and Philippe J. Guérin
    2020
    BMC Medicine (2020) 18:279
    Impact of a package of diagnostic tools, clinical algorithm, and training and communication on outpatient acute fever case management in low- and middle-income countries: protocol for a randomized controlled trial
    Olawale Salami, Philip Horgan, Catrin E. Moore, Abhishek Giri, Asadu Sserwanga, Ashish Pathak, Buddha Basnyat, Francois Kiemde, Frank Smithuis, Freddy Kitutu, Gajanan Phutke, Halidou Tinto, Heidi Hopkins, James Kapisi, Myo Maung Maung Swe, Neelam Taneja, Rita Baiden, Shanta Dutta, Adelaide Compaore, David Kaawa-Mafigiri, Rashida Hussein, Summita Udas Shakya, Vida Kukula, Stefano Ongarello, Anjana Tomar, Sarabjit S. Chadha, Kamini Walia, Cassandra Kelly-Cirino & Piero Olliaro
    2020
    Trials 21, 974 (2020). https://doi.org/10.1186/s13063-020-04897-9
    Febrile Illness Evaluation in a Broad Range of Endemicities (FIEBRE): protocol for a multisite prospective observational study of the causes of fever in Africa and Asia
    Heidi Hopkins, Quique Bassat, Clare IR Chandler, John A Crump, Nicholas A Feasey, Rashida A Ferrand, Katharina Kranzer, David G Lalloo, Mayfong Mayxay, Paul N Newton, David Mabey, FIEBRE Consortium
    2020
    BMJ Open 2020;10:e035632. doi: 10.1136/bmjopen-2019-035632
    Assessment of antimicrobial use and prescribing practices among pediatric inpatients in Zimbabwe
    Ioana D. Olaru, Anne Meierkord, Brian Godman, Crispen Ngwenya, Felicity Fitzgerald, Vongai Dondo, Rashida A. Ferrand & Katharina Kranzer
    2020
    Journal of Chemotherapy doi: 10.1080/1120009X.2020.1734719
    Patients with positive malaria tests not given artemisinin-based combination therapies: a research synthesis describing under-prescription of antimalarial medicines in Africa
    Shennae O’Boyle, Katia J. Bruxvoort, Evelyn K. Ansah, Helen E. D. Burchett, Clare I. R. Chandler, Siân E. Clarke, Catherine Goodman, Wilfred Mbacham, Anthony K. Mbonye, Obinna E. Onwujekwe, Sarah G. Staedke, Virginia L. Wiseman, Christopher J. M. Whitty & Heidi Hopkins
    2020
    BMC Medicine volume 18, Article number: 17 (2020) 10.1186/s12916-019-1483-6
    Opening up fever, closing down medicines
    Justin Dixon, Clare Chandler
    2019
    Medicine, Anthropology, Theory; 10.17157/mat.6.4.676
    Redefining typhoid diagnosis: what would an improved test need to look like?
    Richard G Mather, Heidi Hopkins, Christopher M Parry, Sabine Dittrich
    2019
    BMJ Global Health 2019;4:e001831
    Typhoid Vi-conjugate vaccine for outbreak control in Zimbabwe
    Ioana D Olaru, Sekesai Mtapuri-Zinyowera, Nicholas Feasey, Rashida A Ferrand, Katharina Kranzer
    2019
    The Lancet Infectious Diseases, Correspondence, Vol 19, Issue 9, September 2019
    Ascertaining the burden of invasive Salmonella disease in hospitalised febrile children aged under four years in Blantyre, Malawi
    Chisomo L. Msefula, Franziska Olgemoeller, Ndaru Jambo, Dalitso Segula, Trinh Van Tan , Tonney S. Nyirenda, Wilfred NediI , Neil Kennedy, Matthew Graham , Marc Y. R. Henrion, Stephen Baker, Nicholas Feasey, Melita Gordon, Robert S. Heyderman
    2019
    PLoS Negl Trop Dis; 13(7): e0007539
    Antibiotic knowledge, attitudes and practices: new insights from cross-sectional rural health behaviour surveys in low-income and middle-income South-East Asia
    Marco J Haenssgen, Nutcha Charoenboon, Giacomo Zanello, Mayfong Mayxay, Felix Reed-Tsochas, Yoel Lubell, Heiman Wertheim, Jeffrey Lienert, Thipphaphone Xayavong, Yuzana Khine Zaw, Amphayvone Thepkhamkong, Nicksan Sithongdeng, Nid Khamsoukthavong, Chanthasone Phanthavong, Somsanith Boualaiseng, Souksakhone Vongsavang, Kanokporn Wibunjak, Poowadon Chai-in, Patthanan Thavethanutthanawin, Thomas Althaus, Rachel Claire Greer, Supalert Nedsuwan, Tri Wangrangsimakul, Direk Limmathurotsakul, Elizabeth Elliott, Proochista Ariana
    2019
    BMJ Open 2019;9:e028224 doi: 10.1136/bmjopen-2018-028224
    The drug bag method: lessons from anthropological studies of antibiotic use in Africa and South-East Asia
    Justin Dixon, Eleanor MacPherson, Salome Manyau, Susan Nayiga, Yuzana Khine Zaw, Miriam Kayendeke, Christine Nabirye, Laurie Denyer Willis, Coll de Lima Hutchison, Clare I. R. Chandler
    2019
    Global Health Action doi: 10.1080/16549716.2019.1639388
    Current accounts of antimicrobial resistance: stabilisation, individualisation and antibiotics as infrastructure
    Clare I R Chandler
    2019
    Palgrave Communications 5, Article number: 53 (2019)
    If it's not Malaria, What is Causing the Fever?
    Quique Bassat
    2019
    ISGlobal Health is Global Blog
    How context can impact clinical trials: a multi-country qualitative case study comparison of diagnostic biomarker test interventions
    Marco J. Haenssgen, Nutcha Charoenboon, Nga T. T. Do, Thomas Althaus, Yuzana Khine Zaw, Heiman F. L. Wertheim and Yoel Lubell
    2019
    Trials 2019 20:111
    Accounting for aetiology: can regional surveillance data alongside host biomarker-guided antibiotic therapy improve treatment of febrile illness in remote settings?
    Chandna A, White LJ, Pongvongsa T, Mayxay M, Newton PN, Day NPJ, Lubell Y.
    2019
    Wellcome Open Res. 2019 Jan 2;4:1. doi:10.12688
    Harnessing alternative sources of antimicrobial resistance data to support surveillance in low-resource settings
    Elizabeth A Ashley,  Nandini Shetty,  Jean Patel,  Rogier van Doorn, Direk Limmathurotsakul , Nicholas A Feasey,  Iruka N Okeke, Sharon J Peacock
    2018
    Journal of Antimicrobial Chemotherapy, Volume 74, Issue 3, 1 March 2019, Pages 541–546
    The Consequences of AMR Education and Awareness Raising: Outputs, Outcomes, and Behavioural Impacts of an Antibiotic - Related Educational Activity in Lao PDR
    Marco J. Haenssgen, Thipphaphone Xayavong, Nutcha Charoenboon, Penporn Warapikuptanun and Yuzana Khine Zaw
    2018
    Antibiotics 2018, 7(4), 95; DOI: 10.3390/antibiotics7040095
    A comparison of patients' local conceptions of illness and medicines in the context of C-reactive protein biomarker testing in Chiang Rai and Yangon
    Khine Zaw, Y., Charoenboon, N., Haenssgen, M. J., Lubell, Y. (2018)
    2018
    American Journal of Tropical Medicine and Hygiene
    The social role of C-reactive protein point-of-care testing to guide antibiotic prescription in Northern Thailand
    Haenssgen, M. J., Charoenboon, N., Althaus, T., Greer, R. C., Intralawan, D., & Lubell, Y. (2018).
    2018
    Social Science & Medicine, 202, 1-12. Epub 2018 Feb 23
    It is time to give social research a voice to tackle antimicrobial resistance?
    Haenssgen, M. J., Charoenboon, N., & Khine Zaw, Y. (2018)
    2018
    Journal of Antimicrobial Chemotherapy, Volume 73, Issue 4, 1 April 2018, Pages 1112–1113 doi.org/10.1093
    Malaria-free but still sick: What’s giving millions of kids fevers?
    Gretchen Vogel
    2018
    Science; doi:10.1126/science.aat5098
    Febrile illness in Asia: gaps in epidemiology, diagnosis and management for informing health policy
    Shrestha P1, Roberts T, Homsana A, Myat TO, Crump JA, Lubell Y, Newton PN
    2018
    Clin Microbiol Infect. 2018 Aug;24(8):815-826. doi: 10.1016/j.cmi.2018.03.028. Epub 2018 Mar 23.
    Emerging Resistance to Empiric Antimicrobial Regimens for Pediatric Bloodstream Infections in Malawi (1998–2017)
    Pui-Ying Iroh Tam, Patrick Musicha Kondwani Kawaza, Jenifer Cornick, Brigitte Denis, Bridget Freyne, Dean Everett, Queen Dube, Neil French, Nicholas Feasey, Robert Heyderman
    2018
    Clinical Infectious Diseases, Volume 69, Issue 1, 1 July 2019, Pages 61–68, doi.org/10.1093/cid/ciy834
    The epidemiology of febrile illness in sub-Saharan Africa: implications for diagnosis and management
    Maze MJ, Bassat Q, Feasey NA, Mandomando I, Musicha P, Crump JA
    2018
    Clin Microbiol Infect. 2018 Feb 15 doi: 10.1016/j.cmi.2018.02.011
    Fever Diagnostic Technology Landscape
    Unitaid, World Health Organisation
    2018
    Unitaid Technology Landscape, 1st edition
    Febrile Illness in Adolescents and Adults
    Crump JA, Newton PN, Baird SJ, Lubell Y.
    In: Holmes KK, Bertozzi S, Bloom BR, Jha P, editors.
    2017
    Major Infectious Diseases. 3rd edition. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2017 Nov. Chapter 14.
    Addressing Antimicrobial Resistance Through Social Theory: An Anthropologically Oriented Report.
    Chandler, C; Hutchinson, E; Hutchison, C
    2016
    Technical Report. London School of Hygiene & Tropical Medicine
    Estimating the Burden of Febrile Illnesses
    Crump JA, Kirk MD.
    2015
    PLoS Negl Trop Dis; 9(12): e0004040
    Etiology of Severe Febrile Illness in Low- and Middle-Income Countries: A Systematic Review
    Prasad N, Murdoch DR, Reyburn H, Crump JA.
    2015
    PLoS One; 10(6): e0127962
    Etiology of severe non-malaria febrile illness in Northern Tanzania: a prospective cohort study
    Crump JA, Morrissey AB, Nicholson WL, et al.
    2013
    PLoS Negl Trop Dis; 7(7): e2324
    Causes of non-malarial fever in Laos: a prospective study
    Mayxay M, Castonguay-Vanier J, Chansamouth V, et al.
    2013
    Lancet Glob Health; 1(1): e46-54
    Estimating the incidence of typhoid fever and other febrile illnesses in developing countries
    Crump JA, Youssef FG, Luby SP, et al.
    2003
    Emerg Infect Dis; 9(5): 539-44
    Research and substudies

    Other research, masters projects and sub-studies will take place in association with the main FIEBRE study, information about these is detailed in this section. 

    Research and substudies

    Impact of the COVID-19 pandemic on health care workers and the health care system in Zimbabwe (ICAROZ)

    ICAROZ aims to implement comprehensive occupational health services including SAR-CoV-2 testing integrated with screening for major causes of morbidity and mortality in frontline health care workers, with rapid feedback of results to reduce nosocomial spread and trace household contacts.

    The occupational health service will be set up in the eight communities and three hospitals (where FIEBRE operating). This will include community health care workers, nurses, midwives, auxiliary nurses, student nurses, cleaners, clerks, security, doctors, radiographers and other staff. The service will include a respiratory symptom screen, temperature, blood pressure and HbA1c measurement as well as an abbreviated physical exam. Anybody with fever and/or respiratory symptoms will be asked to submit a sputum sample for tuberculosis testing (depending on the duration of symptoms) and a nasoparyngeal swab will be taken for SARS-CoV-2. HIV testing either provider-delivered or self-testing using oral mucosal kits will also be offered. Results will be fed back to clients within 24 hours and appropriate measures for self-isolation will be discussed. Contact tracing will be conducted as per the national guidelines.

    Lead investigator: Prof Katharina Kranzer 
    Funder: University of Bristol (Elizabeth Blackwell Institute Global Public Health Research Strand)
    Host institute: Biomedical Research & Training Institute
    Collaborators: Dr Justen Manasa (Biomedical Research & Training Institute), Prof. Chiratidzo Ndhlovu (University of Zimbabwe), Dr. Hilda Mujuru (University of Zimbabwe), Professor Simbarashe Rusakaniko (University of Zimbabwe)
    Setting: hospitals and primary care clinics in/aroundHarare
    Population: 6620 community health care workers, hospital and clinic staff 
    Location: Zimbabwe

    Marker of Severity Diagnostics for Evaluating Fever (MOS-DEF) 

    MOS-DEF logo

    The Marker of Severity Diagnostics for Evaluating Fever (MOS-DEF) project is a sub-study of FIEBRE funded by Global Good. The objective of MOS-DEF is to develop, evaluate and deploy multiplex assays to measure human blood-borne factors that are released during an immune response. These factors may be informative to indicate the potential causes of fever, and/or, the severity of fever.

    Analysis of the assay data will take the form of statistical and computational approaches to identifying individual markers or combinations of markers that could assist in identifying the root cause of fever, the severity of disease in patients presenting with fever and 28 day outcomes of fever cases.

    As a sub-study of FIEBRE, the source materials of MOS-DEF are blood plasma collected from inpatient and outpatient settings in the FIEBRE study countries. Analyses will be informed by pre-existing clinical and laboratory data collected during FIEBRE.

    Tegwen Marlais is leading the MOS-DEF multiplex assay development at LSHTM.

    Markers of immune and endothelial activation

    Biomarker Name
    CRP  C-reactive protein 
    PCT     procalcitonin 
    Chitinase     chitinase 
    Ang-1  angiopoietin-Tie-1
    Ang-2  angiopoietin-Tie-2
    Azu/HBP   azurocidin 1/heparin binding protein
    FLT-1  fms-like tyrosine kinase-1 
    sTNFR-1 soluble tumour necrosis factor receptor -1 
    TREM-1 triggering receptor expressed on myeloid cells-1
    TRAIL TNF-related apoptosis-inducing ligand
    IL-6 interleukin-6
    IL-8   interleukin-8
    IL-10 interleukin-10
    IP-10 interferon gamma-induced protein 10
    MxA  myxovirus resistance protein A

    Antimicrobial resistance of Gram-negative bacteria from urine specimens (ARGUS)

    Antimicrobial resistance (AMR) is a global problem affecting all countries irrespective of income and geographical location, and has been highlighted by the World Health Organization as one of the three most important public health threats of the 21st century. The increase in AMR is driven among others by inappropriate antibiotic use, insufficient or lacking infection control systems and the dissemination of successful bacterial clones harbouring resistance genes. Infections due to drug-resistant organisms are associated with increased mortality and risk of onward transmission, particularly in low-income settings where alternative antibiotics are not readily available, and pose an immense burden on weak health systems. 

    The ARGUS study aims to investigate the prevalence of and underlying molecular mechanisms for AMR in Gram-negative bacilli causing urinary tract infections in Zimbabwe. Taking into account that inappropriate antibiotic use is a main driver of AMR, this study plans to investigate antibiotic consumption in adults presenting to primary care. This information may be used to interpret the results on prevalence of antibiotic resistance. 

    The results from this study will be used to inform policy and development of treatment recommendations. Whole genome sequencing results will provide a better understanding of the prevalent resistance genes in Zimbabwe, of the spread of successful clones, and potentially will contribute to developing strategies to tackle AMR.
     
    Lead investigator: Dr Ioana Olaru is an infectious diseases physician and currently undertaking a PhD with LSHTM
    Setting: primary care clinics from Harare
    Population: 1500 participants with suspected urinary tract infections
    Location: Zimbabwe
    Supervisors: Katharina Kranzer, Rashida Ferrand, Shunmay Yeung


    Carriage of antimicrobial resistance genes in children enrolled in the FIEBRE study 

    Antibiotic resistance (or antimicrobial resistance - AMR) is a well-recognised threat to global health. Few studies have examined how frequently people in Africa carry bacteria with genes that confer resistance to different antibiotics. The limited data available suggest that the rate of carriage of bacteria with resistant genes is high, even when the antibiotics in question are not widely available locally. There are unanswered questions as to where these genes have come from: previous antibiotic use (either prescribed or over-the-counter); environmentally from the hospital or community, or from eating food where antibiotics have been used in production. We also do not know how often carrying bacteria with AMR genes leads to disease, and whether this leads to a worse outcome for African children. 

    This study aims to investigate how often children with fever attending inpatient and outpatient facilities in Zimbabwe carry AMR bacteria, whether this relates to the cause of their fever, and leads to worse outcome. The rates of AMR bacterial carriage will be compared before and after admission (for inpatients) and with community controls. In a small number of samples, AMR genes within bacteria will be analysed and compared, to see if the spread of particular genes in hospitals and communities can be mapped, and to explore where the genes may have come from. This study is planned to produce initial data for a wider study in collaboration with vets and geographers looking at the spread of AMR genes in Zimbabwe, and what can be done to prevent that spread.

    Photo of Felicity Fitzgerald

    Project duration: 2017 – 2021

    LSHTM lead investigator: Felicity Fitzgerald, UCL Great Ormond Street Institute of Child Health 
    Co-investigators: Rashida Ferrand, Shunmay Yeung, David Mabey, Ioana Olaru
    Funding: Academy of Medical Sciences and the funders of the Starter Grant for Clinical Lecturers scheme
    Location: Zimbabwe
    Website