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An Introduction
Basic Principles

. To find a causal answer, start with a causal question.
Then:

1 specify exposure, outcome, population of interest, target
causal effects (estimands)

2 state assumptions for identification and estimation of effects
from the data

3 interpret results cautiously.

[Goetghebeur et al. 2020]

. These are indeed the principles guiding RCTs and, for observational
studies, are referred to as “target trial emulation” (TTE).
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An Introduction
Basic Principles

Estimands

. Accepted specification of estimands is via potential outcomes

. Ya: outcome that would arise had we set A to take the value a by a
well-defined (hypothetical) intervention.

. For example (for a binary exposure A):

- ACE=E (Y1)− E (Y0)
- ATT=E (Y1|A = 1)− E (Y0|A = 1)

. Identification requires linking data to these hypothetical quantities,
e.g. invoking assumptions of no interference, consistency, and
positivity.

. Choice of estimation methods: each requiring additional
assumptions (e.g. no unmeasured confounding, correct
(semi-)parametric models).
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An Introduction
Basic Principles

Estimands for time-to-event outcomes

. Well known challenges [Andersen et al. 2020]:

- Time origin and scale: from birth/entry/surgery?
- Censoring: information on whether event is observed.
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Estimands for time-to-event outcomes

. Well known challenges [Andersen et al. 2020]:

- Time origin and scale: from birth/entry/surgery?
- Censoring: information on whether event is observed.

Which aspects of time should we focus on when
comparing alternative worlds?
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An Introduction
Causality and Survival Analysis

Estimands

Survival Estimands (Version I)

Let Ta be the potential survival time if we set A to take the value a by a
well-defined (hypothetical) intervention.

(A) Risk scale:
Differences in survival probabilities at relevant times

ACE(t) = P(T1 > t)–P(T0 > t), t in[0, τ ]

This is the difference in (marginal) survival functions of POs,

. Interpretation:
risk difference for no event by time t had random patient been
treated versus not.
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An Introduction
Causality and Survival Analysis

Estimands

Survival Estimands (Version I)

(B) Hazard scale:

Contrast of hazards, for example λ1(t)
λ0(t) , where

λa(t) = limh→0
1

h
P(t ≤ Ta < t + h|Ta ≥ t)

. Complication:
Interpretational difficulties because of the built-in selection due to
the conditioning on different subgroups (T0 ≥ t and T1 ≥ t)).
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An Introduction
Causality and Survival Analysis

Estimands

Survival Estimands (Version I)

(C) Restricted Mean Survival Times (RMST):∫ τ

0

P(T1 > t)dt −
∫ τ

0

P(T0 > t)dt

These mean times are specific to τ

(D) Mean Survival Time:∫ ∞

0

P(T1 > t)dt −
∫ ∞

0

P(T0 > t)dt

Preferred in econometrics, e.g. in stteffects in Stata

(E) Other scales, e.g. speed from Accelerated Failure Time Models.
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An Introduction
Causality and Survival Analysis

Estimands

Comments

. The choice between these estimands should be guided by their
clinical relevance.

. In most settings these are contrasts on risk scale.

. Note however that hazard models are useful to derive such contrasts.

. Whichever one is chosen, definitions above have no consideration of
the impact of censoring.
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An Introduction
Causality and Survival Analysis

Dealing with censoring

Censoring

- Do we want to quantify causal effects in the absence in censoring?

It depends on the source of censoring: for some it does not always
make clinical sense to remove them,

- Administrative reasons
- Loss to follow-up
- Treatment switching
- Competing event
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- Do we want to quantify causal effects in the absence in censoring?

It depends on the source of censoring: for some it does not always
make clinical sense to remove them,
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An Introduction
Causality and Survival Analysis

Dealing with censoring

The problem with censoring

Consider a subset of the follow-up with administrative censoring:

X A Yk Ck+1 Yk+1

Z

[Adapted from Young et al. , 2020]

A: baseline treatment
Yk : outcome at time tk
X : baseline confounders

Ck : censoring indicator at time tk
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Dealing with censoring

The problem with censoring

Consider a subset of the follow-up with informative censoring:

X A Yk Ck+1 Yk+1

ZZ

[Adapted from Young et al. , 2020]

A: baseline treatment
Yk : outcome at time tk
X : baseline confounders
Ck : censoring indicator at time tk Z : predictors of censoring and outcome
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An Introduction
Causality and Survival Analysis

Dealing with censoring

Survival Estimands (Version II)

. If happy to phrase the question “in the absence of censoring”,

. Risk scale:

ACE(t) = P(TA=1,C=0 > t)–P(TA=0,C=0 > t), t in[0, τ ]

where TA=a,C=0 is the potential survival time if we set A to take the
value a and C = 0 over the entire follow-up.

. and similarly for the other estimands.
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An Introduction
Identification and Estimation

Identification

For identification of causal effects for a time-to-event outcome, invoke:

. No interference, consistency and positivity of the exposure

. No unmeasured confounding (NUC), i.e. : sufficient covariate
information regarding treatment assignment confounding

. In the presence of censoring we also require: sufficient covariate
information regarding (possibly time-varying) ‘common causes’ of
censoring and event.
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An Introduction
Identification and Estimation

Estimation of ACE(t)
With administrative censoring

ACE(t) = P(T1 > t)–P(T0 > t), t in[0, τ ]

1. Model-based marginal counterfactual survival curves:

- (Sufficiently) flexible survival models (e.g. proportional or
additive hazard model)

- Derive individual-level predicted potential survival curves
- Standardisation to the distribution of the observed confounders
(“empirical standardization”)

- Compute difference at selected values of t.
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An Introduction
Identification and Estimation

Estimation of ACE(t)
With administrative censoring

ACE(t) = P(T1 > t)–P(T0 > t), t in[0, τ ]

2. IPTW of Marginal Structural Models (MSM):

- Fit propensity score (PS) model for treatment A
- Derive stabilized weights w from the predicted PS (IPTW)
- Fit survival MSM for treatment by reweighing the data using w
- Use the model to predict potential survival curves
- Compute difference at selected values of t.
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An Introduction
Identification and Estimation

Dealing with censoring

Estimation of ACE(t)
With informative censoring

ACE(t) = P(TA=1,C=0 > t)–P(TA=0,C=0 > t), t in[0, τ ]

Estimation requires dealing with the drivers of censoring:

Approach 1. Include predictors of missingness among the conditioning
factors

Approach 2. Estimate inverse probability of censoring weights (IPCW) and
combine them with IPTW.
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An Introduction
The Simulation Learner

The Simulation Learner
Inspiration: the Rotterdam study [Royston & Lambert, 2009; Sjolander, 2016]

. - About 3000 women who had undergone surgery for breast
cancer and, for some, hormonal therapy was offered in 1978 to
1993

- Outcome of interest: overall mortality
- Strong negative confounding of the association between

therapy and mortality
- Informative loss to follow-up driven by age and year of surgery
- Lack of positivity for younger women and those treated before

1985
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An Introduction
The Simulation Learner

The Simulation Learner

. Excluded women younger than 40 and with surgery before 1982

. Retained all the original confounders data

. Generated:

- two versions of observed data: with / without informative
censoring

- potential survival times: TA=0,C=0 and TA=1,C=0
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The Simulation Learner

. Excluded women younger than 40 and with surgery before 1982

. Retained all the original confounders data

. Generated:

- two versions of observed data: with / without informative
censoring

- potential survival times: TA=0,C=0 and TA=1,C=0

Age, etc

Year

A Yk Ck+1 Yk+1
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An Introduction
The Simulation Learner

The Data
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An Introduction
The Simulation Learner

Results

Results: administrative censoring
1- Model-based marginal counterfactual survival curves

-0.05

0.00
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0.15

0.20

S 1
(t)

-S
0(t

)

0 2 4 6 8 10
Years from surgery

Estimated ACE True ACE

ACE (with admin censoring)

Time True ACE(t) Estimated
5 yr 0.025 0.026

(-0.002, 0.055)

10 yr 0.052 0.040
(-0.004, 0.083)

[Estimated in Stata using P. Lambert’s standsurv]
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Results: informative censoring
1- Model-based marginal counterfactual survival curves
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ACE (ignoring informative censoring)

Time True ACE(t) Estimated
5 yr 0.025 0.019

(-0.019, 0.057)

10 yr 0.052 0.028
(-0.029, 0.086)

[Estimated in Stata using P. Lambert’s standsurv]
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Results

Results: informative censoring
1- Model-based marginal counterfactual survival curves
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5 yr 0.025 0.027
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10 yr 0.052 0.040
(-0.020, 0.099)

[Estimated in Stata using P. Lambert’s standsurv]
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Results

Results: informative censoring
1- Model-based marginal counterfactual survival curves
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5 yr 0.049 0.066

(-0.031, 0.164)

10 yr 0.264 0.240
(-0.114, 0.592)

[Estimated in Stata using P. Lambert’s standsurv]
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An Introduction
The Simulation Learner

Results

Results: administrative censoring
2- IPTW of MSMs
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An Introduction
Summary

Summary

. Counterfactual-based causal inference has shifted the focus from
model-based parameters to estimands defined irrespectively of any
model.

. This should free us from necessarily wanting to express causal
effects on the hazard scale and choose meaningful, clinically
relevant quantities.

. Dealing with censoring calls upon a careful choice of potential
outcomes and of appropriate estimation approach.

. This was just a basic introduction:
the real fun will start with the next speakers!
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THANK YOU!
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