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Appendix 1: COVID Dogs Research Team (CDRT) and Hospital Study Abbreviations 

Number Institution First Name Last Name 

1, 2 

Department of Disease Control, Faculty of Infectious and Tropical Diseases, and 

ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Robert Jones 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Ana Assis 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Ewan Borthwick 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Laura Caton 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Rachel Edwards 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Janette Heal 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine David Hill 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Nazifa  Jahan 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Cecelia Johnson 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Angela Kaye 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Emily Kirkpatrick 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Sarah Kisha 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Zaena 
Ledeatte 
Williams 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Robert Moar 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Tolulope Owonibi 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Benjamin Purcell 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Christopher Rixson 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Freya Spencer 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Anastasios Stefanidis 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Sophie Stewart 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Scott Tytheridge 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Sian  Wakley 

2 ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine Shanice Wildman 

3 Medical Detection Dogs Catherine Aziz 

3 Medical Detection Dogs Helen Care 

3 Medical Detection Dogs Emily  Curtis 

3 Medical Detection Dogs Claire Dowse 

3 Medical Detection Dogs Alan Makepeace 

3 Medical Detection Dogs Sally-Anne  Oultram 

3 Medical Detection Dogs Jayde Smith 

4  Department of Biosciences, Durham University Fiona Shenton 

5 Clinical Research Department, London School of Hygiene and Tropical Medicine Harry Hutchins 

7 School of Chemistry, Cardiff University Robert Mart 

14 Basildon Hospital (BSDN) Jo-anne Cartwright 

14 Basildon Hospital (BSDN) Miranda Forsey 

14 Basildon Hospital (BSDN) Kerry Goodsell 

14 Basildon Hospital (BSDN) Lauren Kittridge 

14 Basildon Hospital (BSDN) Anne Nicholson 

14 Basildon Hospital (BSDN) Angelo Ramos 

14 Basildon Hospital (BSDN) Joanne Ritches 

14 Basildon Hospital (BSDN) Niranjan Setty 

14 Basildon Hospital (BSDN) Mark Vertue 

15 University College London Hospital (UCLH) Malin Bergstrom 

15 University College London Hospital (UCLH) Zain  Chaudhary 

15 University College London Hospital (UCLH) Angus De Wilton 

15 University College London Hospital (UCLH) Kate Gaskell 

15 University College London Hospital (UCLH) Catherine Houlihan 

15 University College London Hospital (UCLH) Imogen Jones 

15 University College London Hospital (UCLH) Marios Margaritis 

15 University College London Hospital (UCLH) Patricia Miralhes 

15 University College London Hospital (UCLH) Leah Owens 

15 University College London Hospital (UCLH) Tommy Rampling 

15 University College London Hospital (UCLH) Hannah  Rickman 

16 Chelsea & Westminster Hospital Foundation Trust (CAWH) Marta  Boffito 

16 Chelsea & Westminster Hospital Foundation Trust (CAWH) Candida Fernandez 

17 Kettering General Hospital NHS Foundation Trust (KETG) Bryony Cotterell 

17 Kettering General Hospital NHS Foundation Trust (KETG) Anne-Marie Guerdette 
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17 Kettering General Hospital NHS Foundation Trust (KETG) George Tsaknis 

17 Kettering General Hospital NHS Foundation Trust (KETG) Margaret Turns 

17 Kettering General Hospital NHS Foundation Trust (KETG) Joanne Walsh 

18 Buckinghamshire Healthcare NHS Trust (BUCK) Lisa Frankland 

18 Buckinghamshire Healthcare NHS Trust (BUCK) Raha West 

19 Macclesfield District General Hospital (MACH) Maureen Holland 

19 Macclesfield District General Hospital (MACH) Natalie Keenan 

19 Macclesfield District General Hospital (MACH) Helen Wassall 

19 Macclesfield District General Hospital (MACH) Megan Young 

20 St James’s University Hospital (JUHL) Jade Rangeley 

20 St James’s University Hospital (JUHL) Gwendolyn Saalmink 

21 Kings Mill Hospital (KMSF) Sanjay Adlakha 

21 Kings Mill Hospital (KMSF) Philip Buckley 

21 Kings Mill Hospital (KMSF) Lynne Allsop 

21 Kings Mill Hospital (KMSF) Susan Smith 

21 Kings Mill Hospital (KMSF) Donna Sowter 

22 University Hospital Coventry & Warwickshire (UHCW) Alison Campbell 

22 University Hospital Coventry & Warwickshire (UHCW) Julie Jones 

22 University Hospital Coventry & Warwickshire (UHCW) Steve Laird 

22 University Hospital Coventry & Warwickshire (UHCW) Sarah O’Toole 

22 University Hospital Coventry & Warwickshire (UHCW) Courteney Ryan 

23, 24 William Harvey Hospital and Queen Elizabeth the Queen Mother Hospital Jessica Evans 

23 William Harvey Hospital (WHAD) James Rand 

23 William Harvey Hospital (WHAD) Natasha Schumacher 

24 Queen Elizabeth the Queen Mother Hospital (QEQM) Tracey Hazelton 

25 Manchester Royal Infirmary (MCRI) Andrew Dodgson 

25 Manchester Royal Infirmary (MCRI) Susannah Glasgow 

25 Manchester Royal Infirmary (MCRI) Denise Kadiu 

25 Manchester Royal Infirmary (MCRI) Orianne Lopuszansky 

25 Manchester Royal Infirmary (MCRI) Anu Oommen 

25 Manchester Royal Infirmary (MCRI) Joshi Prabhu 

25 Manchester Royal Infirmary (MCRI) Molly Pursell 

25 Manchester Royal Infirmary (MCRI) Jane Turner 

25 Manchester Royal Infirmary (MCRI) Hollie Walton 

26 Musgrove Park Hospital (MGPH) Robert Andrews 

26 Musgrove Park Hospital (MGPH) Irena Cruickshank 

26 Musgrove Park Hospital (MGPH) Catherine  Thompson 

26 Musgrove Park Hospital (MGPH) Tania Wainwright 

27, 28 Pilgrim Hospital and Lincoln County Hospital Alun Roebuck 

27 Pilgrim Hospital (PGHL) Tara Lawrence 

27 Pilgrim Hospital (PGHL) Kimberley Netherton 

28 Lincoln County Hospital (PGHL-LIN) Claire Hewitt 

28 Lincoln County Hospital (PGHL-LIN) Sarah Shephardson 

29 George Eliot Hospital (GETH) Winston Andrew Crasto 

29 George Eliot Hospital (GETH) Judith Lake 

29 George Eliot Hospital (GETH) Rosemary Musanhu 

29 George Eliot Hospital (GETH) Rebecca Walker 

30 University Hospital Morecambe Bay (UHMB) Karen Burns 

30 University Hospital Morecambe Bay (UHMB) Andrew Higham 

30 University Hospital Morecambe Bay (UHMB) Julie Le Bas 

30 University Hospital Morecambe Bay (UHMB) Nicola Mackenzie 

30 University Hospital Morecambe Bay (UHMB) Hilary Thatcher 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Shannen Beadle 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Sarah Buckley 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Gail Castle 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Aimee Fletcher 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Sara Holbrook 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Patricia Kane 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Kate Lindley 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Tracey Lowry 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Stephanie Lupton 
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31 Mid Yorkshire Hospitals NHS Trust (MYSH) Sharon Oddy 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Lynda Slater 

31 Mid Yorkshire Hospitals NHS Trust (MYSH) Martin Sylvester 

32 Doncaster & Bassetlaw Teaching Hospital (DBTH) Kenneth Agwuh 

32 Doncaster & Bassetlaw Teaching Hospital (DBTH) Veronica Maxwell 

33 Nottingham University Hospital (NHUH) Stephen Ryder 

33 Nottingham University Hospital (NHUH) Kirsty Topham 

34 Central and North West London NHS Foundation Trust (CNWL) Obi Egbuniwe 

34 Central and North West London NHS Foundation Trust (CNWL) Rebecca Matthews 

34 Central and North West London NHS Foundation Trust (CNWL) Alejandro Arenas Pinto 

34 Central and North West London NHS Foundation Trust (CNWL) Paulina Prymas 

34 Central and North West London NHS Foundation Trust (CNWL) Abigail Severn 

34 Central and North West London NHS Foundation Trust (CNWL) Amber Shaw 

35 University Hospitals Birmingham NHS Foundation Trust (BHAM) Safia Begum 

35 University Hospitals Birmingham NHS Foundation Trust (BHAM) Daniel Lenton 

35 University Hospitals Birmingham NHS Foundation Trust (BHAM) Jamie Scriven 

36 Plymouth Hospitals NHS Trust (PLYM) Lucy Leeman 

36 Plymouth Hospitals NHS Trust (PLYM) Karen Rudge 

36 Plymouth Hospitals NHS Trust (PLYM) Emma Storr 

37 Agile Lighthouse Ana Alvarez 

37 Agile Lighthouse Kate Forster 

37 Agile Lighthouse Daniel Hind 
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Appendix 2: Flow chart of study design. 

 

 
 

Infected = SARS-CoV-2 RT-PCR positive, Infected = SARS-CoV-2 RT-PCR negative, LFT = lateral flow test, 

RT-PCR = reverse transcription-polymerase chain reaction   
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Appendix 3: Methods 

Method S1:  Collection and analysis of odour profiles by OSC (organic semi-conducting) sensors   

For each sample, one worn sock was placed in a clean aluminium foil bag (20 cm x 14 cm, WACCOMT Pack 

INC, CN). The bag was heat sealed. A 18G needle was then inserted into the bag and air pumped into the bag 

until inflated to 160 ml. The inflated bags were then incubated at 40˚C for 30 min to volatilise the organic 

compounds into the headspace air. Each bag was then allowed to cool to room temperature (20˚C) and sampled 

four times, in the fume hood using a Model 307B VOC analyser (RoboScientific Ltd, Cambridgeshire, UK) 

fitted with a 12-OSC sensor array chosen to be sensitive to the VOCs which were likely to be associated with 

SARS-CoV-2, based on previous analysis (including ethanol, acetone, methanol, propanol, octanal, heptanal, 

propanal). Data from the sensor array were automatically recorded by the Roboscientific 307B control 

software.1 The VOC analyser was internally sterilised using vapour from 70% ethanol solution to ensure no 

contaminated air remained in the pipework and sensor array used between each run. 

 

Method S2: Part I of dog training to detect odours from people infected with SARS CoV-2: pilot study 

A pilot study was conducted to confirm that three dogs previously trained to discriminate training odour could 

distinguish between 25 samples taken from participants who tested positive for SARS-CoV-2 and 75 samples 

from participants who tested negative for SARS-CoV-2 by reverse transcription-polymerase chain reaction (RT-

PCR). Face masks and socks were presented to the dogs in order to determine which sample type offered the 

best discrimination. Socks appeared to give the strongest signature and, therefore, training continued with these 

samples.  

 

Training sessions required one Bio-Detection trainer to handle and train the dog to discriminate odour, and one 

assistant to handle samples during the training session. For presentation to the dogs, the lid of the sample was 

removed, and each glass vial clipped into a stainless-steel arm with a grill covering the vial opening. Each arm 

was then placed in stainless steel retort stand, placed in a line (Figure S2.1). Cross contamination from one run 

to the next was prevented by cleaning the plates after every run using a commercial glasswasher at a minimum 

of 85°C and leaving them to air dry or drying with paper towel before being used again. Glass vials were 

autoclaved to prevent cross-contamination. 

 

During the pilot study, samples were presented to the dogs in sets of four with no more than one positive sample 

in each line, however, the dogs were also presented with lines of only negative samples (blank lines) under both 

unblinded (where the Bio-Detection Trainer knows the positive or negative status of each presented samples in 

the line) and single blind (where only the assistant placing the samples in the retort stands knows the positive or 

negative status of each samples in the line) conditions (Figure S2.2). 

 

 
Figure S2.1: An example of a stand containing a covid sample and dog training using stands. 
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Figure S2.2: Dog training using three stands 

 

 

The dog trainer tasks the dog to search each stand, off lead with a search command. The trainer then called the 

dog’s decision based on the dog’s behaviour i.e. If the dog indicated a sample (either by a sit or stand indication 

specific to each dog), the trainer called ‘indication’. If the dog left the stands without offering an indication, the 

trainer calls ‘negative’. The result was then entered and recorded on a database. If training under single-blind 

conditions, the decision was verified by the assistant. Under both unblinded and single-blind conditions, a 

correct response was rewarded with an audible click and food or toy reward. All responses were recorded on 

specially designed computer software, Medical Detection Dogs – Olfactory Performance Recording 

Application, (OPRA). Sensitivity and specificity were calculated separately for each trained dog. 

 

Method S3: Part II of dog training to detect odours from people infected with SARS CoV-2: single-

blind training study 

This single-blind study was a progression of the pilot study and was designed to estimate an approximate level 

of sensitivity and specificity of the dogs to detect participants infected with SARS-CoV-2. The dogs that had 

been pre-trained in the pilot study were trained for a further six to eight weeks, along with four additional dogs. 

Early recognition of the scent of a SARS-CoV-2-positive sample by a dog was achieved using search and find 

games, which were gradually replaced by discrimination phases. During training, the reaction of each dog to a 

positive sample was observed (i.e., standing, sitting or lying down) and this indicating behaviour reinforced by 

rewarding the dog with and audible clicker followed by food or ball-play. Samples from 105 SARS-CoV-2 –

positive participants and 316 negative participants were used in this stage of training. 

 

The experimental set-up used for training and testing consisted of a number of stainless-steel retort stands, each 

holding an arm with a sealed and vented glass vial containing a sample (Figure S2.1 and S2.2). A grill placed 

over the mouth of the vials prevents the dog touching the specimen. Each glass vial contained either one positive 

or one negative sample. Cross contamination from one run to the next was prevented by cleaning the plates after 

every run using a commercial glasswasher at a minimum of 85°C and leaving them to air dry or drying with 

paper towel before being used again. Clean arms were used for every sample change. A dog’s behaviour at the 

stand was noted as full alert (indication), heavily investigated (hesitation), weakly investigated (interest) or 

ignored (no interest). The handler called the final decision as an indicated sample or blank. A dog was rewarded 

with food or a ball, when it correctly indicated either positive or a negative run. 

 

Progression from unblinded to single blind training and increasing complexity of the discrimination task was 

dependent on each dog’s individual progress. To assist with this, samples were carefully selected, and positive 

and negative samples matched based on factors including participants’ age, gender and ethnicity. The dog’s 

decision on each sample was recorded and rewarded as in the pilot study, however, when training progressed 

onto multiple target lines, samples where a decision had been ‘called’ by the dog trainer were then removed and 

replaced with a new sample to interrogate. Interrogation of samples continued until the dog had given a decision 
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on each individual sample. All responses were recorded on specially designed computer software, OPRA. 

Sensitivity and specificity were calculated separately for each trained dog. 

 

Method S4: Part III of dog training to detect odours from people infected with SARS CoV-2: double-blind 

testing 

Six dogs were considered trained and used for testing (Table S4.1). For presentation to the dogs, the samples 

were defrosted at room temperature for 60 min. The lid was then removed, and each glass vial clipped into a 

stainless-steel arm with a grill covering the vial opening. Each arm was then placed in a stainless-steel retort 

stand (Figure S2.1 and S2.2). Cross contamination from one run to the next was prevented by cleaning the plates 

after every run using a commercial glasswasher at a minimum of 85°C. Disposable gloves were worn 

throughout the testing and changed them between samples. Tests were performed in an air-conditioned room at 

14.2-20.6oC and 38-53% relative humidity. 

 

A preparator (SM, SA) not involved in dog handling, prepared the randomisation schedule for the trial.  Samples 

were loaded onto the stands by a blinded assistant (CD). A blinded handler, positioned behind a one-way screen 

(so that the dog when working could not receive visual prompts), tasked the dog to search the stands off lead. 

Once a decision had been made by a dog, the blinded handler called the sample as infected or uninfected, and 

the result recorded by a blinded monitor on the database, which then revealed the answer to be correct or 

incorrect. The result was then double verified by an unblinded monitor. If the correct answer was given, the 

handler then rewarded the dog with an audible click and food or toy reward. The sample was then removed from 

the test line and replaced with a random but known filler sample (positive or negative status) so that the dog 

could be tasked on to search any remaining test samples. Data was not collected from filler samples. This 

process was repeated until all test samples in the line had been searched and a decision made on all samples. 

Once the line was complete, a new, full test line was presented, and the process repeated. All dogs were allowed 

a maximum of three explorations per sample to allow the handler to confirm a behaviour offered by the dog 

before making a final decision. Dogs were not permitted to take multiple passes of the line which may have 

resulted in more than three explorations of any test sample. 
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 Photo Breed  Sex  Age 

Asher 

 

Cocker spaniel M 8  

Kyp 

 

Labrador cross M 4 

Lexi 

 

Labrador F 5 

Marlow 

 

Labrador M 4 

Millie 

 

Golden 

Retriever 

F 4 

Tala 

 

Labrador M 3 

Table S4.1: Characteristics of dogs trained in the study 
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Methods S5: Sample Size calculations 

For the double-blind testing, the number of independent samples, encountered by each dog during testing 

determined the precision with which its sensitivity and specificity could be estimated. With 200 positive 

samples i.e. from individuals positive for SARS-CoV-2 RNA by real-time RT-PCR, and an expected sensitivity 

of 85%, observed estimate would have a 95% Confidence Interval (95% CI) of 79% to 90%. With 200 true 

negative samples, and an expected specificity of 90%, observed specificity would have a 95% CI of 85% to 

94%. 

  

With regards to VOC analysis, based on previous studies,2 at least 25 sock samples from infected and uninfected 

participants were required to build a disease-specific model with electronic sensors. 

 

Methods S6: PCA and Discriminant Analyses 

A principal component analyses (PCA) was performed for each of the days separately using the responses from 

the 12 sensors based on a centred and standardized responses (i.e., matrix of correlations). Following these 

analyses, scree-plots were examined to determine the number of relevant dimensions and a biplot generated to 

discriminate which sensor is more associated with the groups under evaluation (negative or positive groups). 

 

In addition, a discriminant analysis (DA) was performed to each day separately, with the aim of obtain and 

assess if a model will allow to discriminate between the two groups. The dataset used corresponded to the same 

12 sensors recorded. In order to assess the ‘predictability’ of the model fitted, a cross-validation procedure was 

followed, where 20% of the observations were selected at random as validation set, and the other 80% was 

considered as training set. After fitting the DA model, the predictions of the testing set were evaluated and a 

sensitivity and specific was obtained. The previous process was repeated 20 times for each of the day datasets. 

  

Methods S7: Bayesian latent class analysis of Dog Covid Diagnostics 

We fitted five different models with varying assumptions. The first. called gold. assumes PCR to be a perfect 

reference standard with 100% sensitivity and specificity and assumes that there is no correlation between the 

results from different dogs, that is if one dog indicates other dogs do not become more likely to indicate as well 

given the disease status. The second, called nocorr, does not assume that PCR is a perfect reference standard but 

instead puts semi-informative priors on the diagnostic accuracy of PCR (s~beta(5,1), with 95% of the prior 

probability mass above s=0.55, c~beta(10,1) with 95% of the mass above c=0.74). The third, called gold corr, 

assumes again PCR to be a perfect reference standard while allowing for correlation between the dogs for both 

Covid positive and negative participants using a random effect model. The fourth, called noninf, allows for 

conditional dependence and does not assume PCR to be a perfect reference standard but instead uses the same 

vague priors as above. The fifth, called info, is the same model as noninf but with more highly informative 

priors on PCR (s~beta(16,2) giving a 95% range from 0.71 to 0.99, c~beta(93,2) giving a 95% prior range to be 

above 94%). The sensitivity of each dog was modelled as 𝑙𝑜𝑔𝑖𝑡(𝑠𝑖
𝐷𝑜𝑔−𝑥

) = 𝑙𝑜𝑔𝑖𝑡(𝑠0
𝐷𝑜𝑔−𝑥

) + 𝜖𝑖 where 𝑖 is the 

individual, 𝜖𝑖 ∼ 𝑁(0, 𝜎). 𝑠0
𝐷𝑜𝑔−𝑥

 has a beta(0.75,0.75) prior and 𝜎 a Gamma(1,1) which results in a non-

informative prior for the mean of 𝑠𝑖
𝐷𝑜𝑔−𝑥

. 

 

Methods S8: Mathematical Modelling 

Briefly, the cycle threshold (Ct) of infected individuals was simulated from trajectories defined by a starting Ct, 

a peak Ct and a total duration of infection, assuming a random time since exposure. We assumed that 31% of 

individuals were asymptomatic on average3 (with 40% shorter duration of infection)4 and that 70% of 

individuals with symptoms prior to departure would not travel5-6 (thus increasing the proportion of 

asymptomatic cases among those who travel). Dogs were assumed to be able to detect infection with a 

sensitivity range between 80-90% informed from the results of the double-blind testing. The sensitivity of PCR 

was assumed to be either 100% up to a Ct of 35 and 0% thereafter or 100% up to a Ct of 40. This permitted 

exploration of the impact of uncertainty in the sensitivity of PCR for detecting low viral loads (with Ct between 

35 and 40) when used in practice. The Ct-dependent sensitivity of the LFT7 was estimated by fitting a logistic 

function to the data presented in Peto.8 
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Appendix 4: Results 

Results S1: Adverse events 

A total of 343 adverse events were recorded from human participants in the study. Only two were possibly 

related to the study. One reported an itchy body from wearing the shirt and one reported a spot on the nose from 

wearing a face mask. Ten serious adverse events were recorded, none of which were deemed related to the 

study.  

 

Twelve adverse events were reported in the dogs, with one dog (Asher) experiencing a severe adverse event and 

being withdrawn from the study. All adverse events were unrelated to the study. 

 

 

Results S2: Sample characteristics used for OSC Sensors 

  Infected group (RT-PCR +ve, n=26)  Uninfected group (RT-PCR -ve, n=27) 

Source of sample 

NHS hospitals 4 (15·4%) 22 (81·5%) 

ARCTEC/LSHTM call centre & Agile Lighthouse 22 (84·6%) 5 (18·5%) 

Gender 

Women 17 (65·4%)  18 (66·7%)  

Men 9 (34·6%)  9 (33·3%)  

Age, years 

Age: 16-50  16 (61·5%)  14 (51·8%)  

Age: 50+  10 (38·5%)  13 (48·1%)  

Ethnicity 

White  25 (96·2%)  26 (96·3%)  

Black 1 (3·8%)  1 (3·7%)  

Symptoms at enrolment     

Classic SAR-CoV-2  13 (50·0%)  10 (37·0%)  

Non-Classic SAR-CoV-2 13 (50·0%)  10 (63·0%)  

Hospital patients 0 (0%) 0 (0%) 

Symptoms at sample receipt at site 

Classic SAR-CoV-2 8 (30·7%) 0 (0%) 

Non-Classic SAR-CoV-2 13 (50·0%) 24 (88·9%) 

Unknown 5 (19·2%) 3 (11·1%) 

Symptoms after 14 days  

Classic SAR-CoV-2 6 (23·1%) 1 (3·7%) 

Non-Classic SAR-CoV-2 18 (69·2%) 24 (88·9%) 

Unknown 2 (7·7%) 2 (7·4%) 

Symptoms at enrolment, at sample receipt at site and 14-day follow-up were categorised as “classic SARS-CoV-

2” if fever, cough, or loss or change of smell or taste were reported, and “non-classic SARS-CoV-2” for those 

who reported no symptoms or where other symptoms were reported, including, shortness of breath, abdominal 

pain, muscle and joint pain, conjunctivitis or nausea. NHS hospitals: CAWH (2 uninfected), DBTH (3 

uninfected), JUHL (5 uninfected), KMSF (1 infected, 3 uninfected), MACH (1 infected, 3 uninfected), MCRI (1 

uninfected), MGPH (3 uninfected), PGHL (1 uninfected), UHCW (1 infected, 2 uninfected). All swabs were 

processed through routine NHS channels. 
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Results S3: Part I of dog training to detect odours from people infected with SARS CoV-2: pilot study 

The pilot study comprised 100 samples (75 negative, 25 positive), to determine if SARS-CoV-2 had an odour 

that could be detected by dogs (Table S3.1). The highest performing dog achieved 88.3% sensitivity and 90.0% 

specificity. Overall, the three dogs achieved a sensitivity range of 75.9-88.3% and a specificity range of 90.0-

95.1%. These results represent all encounters with the samples under single blind conditions, with the result 

from each dog decision taken from the number of times the sample was correctly classified in the final pass. The 

samples included in this part of the study had previously been used in training, so these results do not account 

for the effects of novel exposure to new samples. Despite this, single-blind training conditions provide a more 

accurate representation of the dogs’ ability to detect the odour in testing, as the trainer does not know the status 

of the samples in the line. This means that the trainer cannot cue the dog onto target (positive) samples and must 

rely on reading the indication behaviour offered by the dog.  Following these encouraging initial results, we 

progressed to a larger number of samples and more dogs. 

 
  Infected group (RT-PCR +ve, n=25)  Uninfected group (RT-PCR -ve, n=75) 

Source of sample 

NHS hospitals 11 (44·0%) 44 (58·7%) 

ARCTEC/LSHTM call centre & Agile Lighthouse 14 (56·0%) 31 (41·3%) 

Gender 

Women 15 (60·0%)  45 (60·0%)  

Men 10 (40·0%)  30 (40·0%)  

Age, years 

Age: 16-50  18 (72·0%)  54 (72·0%)  

Age: 50+  7 (28·0%)  21 (28·0%)  

Ethnicity 

White  19 (76·0%)  57 (76·0%)  

Asian  3 (12·0%)  9 (12·0%)  

Other  1 (4·0%)  3 (4·0%)  

Unknown 2 (8·0%)  6 (8·0%)  

Symptoms at enrolment 

Classic SAR-CoV-2  21 (84·0%)  24 (32·0%)  

Non-Classic SAR-CoV-2 4 (16·0%)  51 (68·0%)  

Hospital patients 0 (0%) 0 (0%) 

Symptoms at sample receipt at site 

Classic SAR-CoV-2 8 (32·0%)  2 (2·7%)  

Non-Classic SAR-CoV-2 16 (64·0%)  73 (97·3%)  

Unknown 1 (4·0%) 0 (0%) 

Symptoms after 14 days  

Classic SAR-CoV-2 6 (24·0%)  1 (1.3%)  

Non-Classic SAR-CoV-2 19 (76·0%)  72 (96·0%)  

Unknown 0 (0%) 2 (2·7%) 

 

Table S3.1. Sample characteristics used for pilot study. Symptoms at enrolment, at sample receipt at site and 

14-day follow-up were categorised as “classic SARS-CoV-2” if fever, cough, or loss or change of smell or taste 

were reported, and “non-classic SARS-CoV-2” for those who reported no symptoms or where other symptoms 

were reported, including, shortness of breath, abdominal pain, muscle and joint pain, conjunctivitis or nausea. 

NHS hospitals: BHAM (1 uninfected), BUCK (3 uninfected), CAWH (1 uninfected), DBTH (3 infected, 3 

uninfected), GETH (2 uninfected), JUHL (2 uninfected), KETG (2 infected, 6 uninfected), KMSF (1 infected, 3 

uninfected), MACH (2 uninfected), MCRI (1 uninfected), MGPH (2 uninfected), MYSH (1 infected, 3 

uninfected), PGHL (2 uninfected), PGHL-LIN (1 uninfected), UHCW (3 infected, 6 uninfected), UHMB (3 

uninfected), WHAD (1 infected, 3 uninfected). All swabs were processed through routine NHS channels. 

 

Results S4: Part II of dog training to detect odours from people infected with SARS CoV-2: single-

blind training study 

Characteristics of the study samples are summarised in Tables S4.1. After 6 weeks of training with 105 positive 

and 316 negative sock samples, six dogs achieved a sensitivity range of 75.1%-83.9% and a specificity range 

90.8-95.4% under single-blind conditions (Table S4.2). Lexi was the best performing dog, achieving 83.9% 

sensitivity and 95.4% specificity, whilst the lowest performing dog, Tala, achieved a 75.1% sensitivity and 

90.8% specificity. 

  

Samples presented in training may have been presented to the dogs during unblinded training (where the trainer 

knows the status and position of each samples in the line to promote odour recognition) prior to presentation 

under single blind conditions, however, the rate of novel exposure in single blind increased closer to the start of 

double-blind testing. Through training, seven samples (three positives, five negatives) were presented to the 
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dogs which proved to be highly challenging under both unblinded and single blind conditions. Samples were 

considered challenging when the sample was correctly classified <66.7%, with agreement from three or more 

dogs. This may suggest that these samples were false positive and false negative by PCR testing. When these 

samples are removed from the results, increases in sensitivity and specificity are seen, as shown in Table S4.2. 

 
  Infected group (RT-PCR +ve, n=105)  Uninfected group (RT-PCR -ve, n=316) 

Source of sample 

NHS hospitals 18 (17·1%) 296 (93·7%) 

ARCTEC/LSHTM call centre & Agile Lighthouse 87 (82.9%) 20 (6·3%) 

Gender 

Women 80 (76·2%)  239 (75·6%)  

Men 23 (21·9%)  71 (22·5%)  

Intersex 2 (1·9%)  6 (1·9%)  

Age, years 

Age: 16-50  63 (60·0%)  187 (59·2%)  

Age: 50+  42 (40·0%)  129 (40·8%)  

Ethnicity 

White  100 (95·2%)  301 (95·3%)  

Asian  2 (1·9%)  6 (1·9%)  

Other  1 (1·0%)  3 (0·9%)  

Unknown 2 (1·9%)  6 (1·9%)  

Symptoms at enrolment 

Classic SAR-CoV-2  88 (83·8%)  39 (12·3%)  

Non-Classic SAR-CoV-2 17 (16·2%)  277 (87·7%)  

Hospital patients 3 (2.9%) 0 (0%) 

Symptoms at sample receipt at site 

Classic SAR-CoV-2 38 (36·2%)  3 (0·9%)  

Non-Classic SAR-CoV-2 57 (54·3%)  293 (92·7%)  

Unknown 10 (9·5%) 20 (6·3%) 

Symptoms after 14 days 

Classic SAR-CoV-2 18 (17·1%)  3 (0·9%)  

Non-Classic SAR-CoV-2 84 (80·0%)  303 (95·9%)  

Unknown 3 (2·9%) 10 (3·2%) 

Table S4.1: Sample characteristics used for training and single-blind testing.  Symptoms at enrolment, at 

sample receipt at site and 14-day follow-up were categorised as “classic SARS-CoV-2” if fever, cough, or loss 

or change of smell or taste were reported, and “non-classic SARS-CoV-2” for those who reported no symptoms 

or where other symptoms were reported, including, shortness of breath, abdominal pain, muscle and joint pain, 

conjunctivitis or nausea. NHS hospitals: BHAM (3 uninfected), BSDN (5 uninfected), BUCK (35 uninfected), 

CAWH (3 uninfected), DBTH (1 infected, 4 uninfected), GETH (5 uninfected), JUHL (2 infected, 13 

uninfected), KETG (50 uninfected), KMSF (2 infected, 30 uninfected), MACH (5 infected, 16 uninfected), 

MCRI (1 infected, 5 uninfected), MGPH (33 uninfected), MYSH (1 infected, 31 uninfected), PGHL (2 infected, 

8 uninfected), PGHL-LIN (1 uninfected), QEQM (1 uninfected), UHCW (2 infected, 10 uninfected), UHMB (1 

infected, 3 uninfected), WHAD (1 infected, 40 uninfected). All swabs were processed through routine NHS 

channels. 

 

 
 Average % Average % (challenging samples removed) 

Sensitivity Specificity Sensitivity Specificity 

Asher 79·2 94·2  82·9 94·7 

Kyp 77·4 93·9  79·4 94·1 

Lexi 83·9 95·4  85·6 96·0 

Marlow 80·0 93·5  80·9 93·5 

Millie 76·0 93·4  78·4 93·4 

Tala 75·1 90·8  78·1 91·2 

Table S4.2: Single-blind results. Average percentage sensitivity and specificity of each dog recorded over a six-

week single-blind training phase (n = 105 positive and 316 negatives per dog) and with challenging samples 

removed (n = 102 positive and 311 negatives per dog). 
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Results S5: Bayesian latent class analysis of dog diagnostics 

Results and corresponding 95% BCI are presented in the Table S5.1. There is a clear indication for correlation 

between the dogs and therefore, the models noninf and info are most relevant for interpretation. There is little 

difference between diagnostic accuracy of dogs between the model with informative and vague priors for the 

reference standard. Mean estimates of the sensitivity and specificity of dogs range from 82.1% to 94.3%, and 

76.4% to 92.0% in the case of vague priors. For informative priors, the mean estimates of the sensitivity and 

specificity of dogs range from 81.4% to 93.1%, and 77.0% to 92.3%. Estimates of PCR sensitivity are similar 

for both models at 95.5% and 95.0%. Estimates of PCR specificity are influenced by the prior that assumed it to 

be above 95% with 95% certainty with 93.8% for the vague priors and 95.9% for the informative priors. The 

model which is most similar to a separate analysis for each dog with PCR as the gold standard is the gold corr 

model. 

 

Estimates for the diagnostic accuracy of dogs for SARS-CoV-2 from the full model taking into account the 

imperfect diagnostic accuracy of PCR and conditional dependence between the dogs are very similar to the 

model neglecting both. This indicates that the estimates are not sensitive to the reference standard used in this 

case due to the high sensitivity and specificity estimated for PCR. There is evidence for an imperfect specificity 

of PCR with the upper end of the 95% BCI at 98.6%. The sensitivity of PCR is estimated to be high at 95.9% 

which is at the upper end of the prior evidence included in the study. 

 

 
 gold nocorr gold corr noninf info 

 
Sensitivity 

% (95% CI) 

Specificity 

% (95% CI) 

Sensitivity 

% (95% CI) 

Specificity 

% (95% CI) 

Sensitivity 

% (95% CI) 

Specificity 

% (95% CI) 

Sensitivity 

% (95% CI) 

Specificity 

% (95% CI) 

Sensitivity 

% (95% CI) 

Specificity 

% (95% CI) 

Asher 
91·5 (86·3-

95·7) 

85·6 (79·0-

91·0) 

90·1 (84·1-

94·8) 

84·7 (77·8-

90·5) 

88·1 (82·4-

92·8) 

83·3 (76·8-

88·8) 

90·9 (85·3-

95·4) 

84·8 (77·9-

91·1) 

90·8 (85·0-

95·2) 

85·6 (78·8-

91·3) 

Kyp 
88·4 (83·6-

92·6) 

77·4 (71·4-

83.1) 

88·9 (84·0-

93·0) 

77·0 (70·6-

82·6) 

85·2 (80·3-

89·5) 

74·9 (69-

80·5) 

88·5 (83·6-

92.8) 

76·4 (70·3-

82·1) 

88·1 (83·4-

92·3) 

77·0 (71·2-

82·7) 

Lexi 
89.0 (84·2-

93·0) 

84·8 (79·6-

89·6) 

92·1 (87·8-

95·5) 

86.7 (81.5-

91·2) 

85·3 (80·5-

89·6) 

81·9 (76·8-

86·7) 

90·8 (86·0-

94·9) 

85·3 (79·9-

90·2) 

89·9 (84·8-

94·2) 

85·6 (80·1-

90·3) 

Marlow 
81·1 (75·4-

86·3) 

90·4 (85·9-

94·1) 

82·6 (76·7-

87·8) 

90·7 (86·2-

94·4) 

77·7 (72·0-

82.9) 

88·0 (83·5-

91·9) 

82·1 (76·3-

87·3) 

90·1 (85·4-

93·9) 

81·4 (75·3-

86·8) 

90·6 (85·9-

94·4) 

Millie 
84·2 (78·9-

88·8) 

82·5 (77·0-

87·5) 

86·4 (81·3-

91·0) 

83·8 (78·4-

88·6) 

80·7 (75·4-

85·4) 

79·9 (74·4-

84·7) 

85·5 (80·1-

90·5) 

82·6 (76·9-

87·6) 

84·6 (78·6-

89·7) 

82·9 (77·4-

87·7) 

Tala 
92·0 (87·9-

95·5) 

91·2 (86·8-

94·8) 

95·4 (91·6-

98·3) 

93·2 (89·4-

96·4) 

88·3 (83·9-

92·3) 

88·5 (83·9-

92·5) 

94.3 (89.4-

98) 

92·0 (87·6-

95·8) 

93·1 (87·8-

97·2) 

92·3 (87·7-

96·0) 

PCR 
99·9 (99·9-

100) 
99·9 (99·9-

100) 
94·2 (90·3-

97·2) 
92·4 (88·4-

95·8) 
100 (100-

100) 
100 (100-

100) 
95·9 (92·2-

98·8) 
93·8 (89·2-

97·5) 
95·5 (91·7-

98·3) 
95·9 (92·6-

98·6) 

 

Table S5.1 Model results from the Bayesian analysis. Where gold assumes RT-PCR is a perfect test and there 

is no correlation in the way that dogs respond to an odour sample, nocorr assumes the RT-PCR is imperfect and 

there is no correlation between dogs, gold corr assumes that RT-PCR is imperfect and there is correlation in the 

way dogs respond to the samples, noninf assumes that RT-PCR is imperfect with a higher sensitivity than 

specificity (since RT-PCR will identify people several weeks after stopping being infectious, info assumes that 

RT-PCR is imperfect). 
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Results S6: Sensitivity and specificity and sample characteristics 
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 RT-PCR +ve RT-PCR -ve 

 n/N 
Sensitivity 
(%) 

Odds Ratio 
(95% CI) 

p-value n/N 
Specificity 
(%) 

Odds Ratio 
(95% CI) 

p-value 

Sex 

Female 712/831 85.7 1  736/873 84.3 1  

Male 245/298 82.2 
0.77 (0.54, 

1.10) 
0.155 206/259 79.5 

0.72 [0.50, 

1.03] 
0.07 

Age Group 

16-50 614/724 84.8 1  541/656 82.5 1  

50+ 343/405 84.7 
0.99 
(0.70, 1.38) 

0.933 401/476 84.2 
1.14 [0.83, 
1.57] 

0.427 

Ethnicity 

Other 42/58 72.4 1  31/46 67.4 1  

White 915/1071 85.4 
2.28 (1.25, 

4.19) 
0.008 825/986 83.7 

2.51 [1.32, 

4.79] 
0.005 

Symptoms at enrolment 

No Symptoms 58/81 71.6 1  714/839 85.1 
1.37 [0.94, 

2.00] 
 

Classic SARS-CoV-2 717/838 85.6 
2.34 (1.39, 

3.96) 
 189/234 80.8 1  

Non-classic SARS-CoV-2 182/210 86.7 
2.57 (1.37, 

4.83) 
0.004 39/59 66.1 

0.46 [0.24, 

0.86] 
0.001 
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