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ML in critical applications

ML tools make potentially high-stakes decisions: self-driving cars, disease diagnosis, ...

Can we have reliable uncertainty quantification (confidence) in these predictions?



Today’s predictive algorithms

random forests, gradient boosting

Breiman and Friedman

neural networks

LeCun, Hinton and Bengio



A snapshot of conformal inference

I Developed a predictive layer that returns valid prediction intervals

I Training samples (Xi ,Yi ), i = 1, . . . , n

I Test point (X ,Y = ?)

I Conformal inference Vovk et al. ’99, Papadopoulos et al. ’12, Lei et al. ’18, Barber et al. ’19, Romano et al. ’19

Constructs predictive interval Ĉ (x) with P
(
Y ∈ Ĉ (X )

)
≥ 90%

I Holds in finite samples for any distribution of (X ,Y ) and any predictive algorithm f̂
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From factuals to counterfactuals

Counterfactual reasoning is ubiquitous in modern science

I Causal inference: what would have been one’s response had one taken the treatment

I Offline policy evaluation: what would have been the outcome had the policy changed

I Algorithmic fairness: what would have been the prediction had one belonged to another group

I Explainable machine learning: what would have been the output had the input changed
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Agenda

Part I: counterfactual predictive inference



Inference of counterfactuals?

I Potential outcome (PO) framework (Neyman, ’23; Rubin, ’74)

• T ∈ {0, 1} binary treatment

• Y (1),Y (0) potential outcomes

• X covariates

I Assumptions: super-population (i.i.d.) + SUTVA + unconfoundedness (Y (1),Y (0)) |= T | X

Find interval estimate Ĉ1(X ) s.t. P(Y (1) ∈ Ĉ1(X ) | T = 0) ≥ 90%
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Inference of counterfactuals?

I Causal diagram (DAG) framework (Pearl, ’95)

• T ∈ {0, 1} binary treatment

• Y1,Y0 counterfactuals

• X covariates

I Assumptions: super-population (i.i.d.) + X satisfying the backdoor criterion

Find interval estimate Ĉ1(X ) s.t. P(Y1 ∈ Ĉ1(X ) | T = 0) ≥ 90%



Counterfactual inference

Assign treatment by a coin toss for each subject based on the propensity score e(x)



Counterfactual inference

Each subject has potential outcomes (Y (1),Y (0)) and the observed outcome Y obs



Counterfactual inference
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The counterfactual inference problem and covariate shift
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The counterfactual inference problem and covariate shift

Use i.i.d. samples (observed treated units) from PX |T=1 × PY (1)|X to construct Ĉ1(X ) with

P(Y (1) ∈ Ĉ1(X )) ≥ 90% under PX |T=0 × PY (1)|X

Covariate shift w(x) ,
dPX |T=0

dPX |T=1
(x) ∝ 1− e(x)

e(x)
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Conformal inference under covariate shift

Conformal Inference

Vovk et al. (’99), Papadopoulos et al. (’12), Lei et al. (’18)

(Xi ,Yi )
i.i.d.∼ PX × PY |X =⇒ P(X ,Y )∼PX×PY |X (Y ∈ Ĉ (X )) ≥ 90%



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Tibshirani, Barber, Candès, Ramdas (’19); Romano, Patterson, Candès (’19)

(Xi ,Yi )
i.i.d.∼ PX × PY |X =⇒ P(X ,Y )∼QX×PY |X (Y ∈ Ĉ (X )) ≥ 90%



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Randomly split (Xi ,Y
obs
i )Ti=1 into two folds

Proper training set Calibration set



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Fit 5 & 95%-th quantiles of Y (1) | X on training fold

Apply quantile regression Calibration set



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Estimate 5 & 95%-th quantiles of Y (1) | X on calibration fold

Apply quantile regression Calibrate



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Signed distance: Vi , max{q̂0.05(Xi )− Yi (1),Yi (1)− q̂0.95(Xi )}

Calibrate Histogram of signed distances



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Weighted dist.:
∑n

i=1 pi (x)δVi + p∞(x)δ∞ where pi (x) = w(Xi )/
(∑n

i=1 w(Xi ) + w(x)
)

Calibrate Histogram weighted by w(x)



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Cutoff: Q(x) , Quantile
(
90%,

∑n
i=1 pi (x)δVi + p∞(x)δ∞

)

Calibrate Find the 90%-th quantile Q(x)



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Interval: Ĉ1(x) = [q̂0.05(x)− Q(x), q̂0.95(x) + Q(x)]

Calibrate Find the 90%-th quantile Q(x)



Near-exact counterfactual inference in finite samples

Theorem (L. and Candès, 2020, for randomized experiments)

Set w(x) = (1− e(x))/e(x) (e(x) known) in weighted split-CQR. Then

90% ≤ P(Y (1) ∈ Ĉ1(X ) | T = 0) ≤ 90% + c/n

I Lower bound holds without extra assumption

I Upper bound holds if Vi ’s are a.s. distinct & overlap holds, and c only depends on the overlap

X Any conditional distribution PY (1)|X

X Any sample size

X Any procedure to fit conditional quantiles
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Approximate counterfactual inference

Theorem (informal, L. and Candès, 2020, for observational studies)

Let ê(x) be an estimate of e(x). Set w(x) = (1− ê(x))/ê(x) in weighted split-CQR. Then

P(Y (1) ∈ Ĉ1(X ) | T = 0) ≈ 90%

if (1) ê(x) ≈ e(x) OR (2) q̂0.05/0.95(x) ≈ q0.05/0.95(x). Under (2),

P(Y (1) ∈ Ĉ1(X ) | T = 0,X ) ≈ 90% with high probability (conditional coverage!)

Similar to the double robustness for ATE



Agenda

Part II: Empirical results on counterfactual inference



Simulation

I Variant of example from Wager and Athey (’18)

I X ∈ Rd Gaussian, independent or correlated, with d ∈ {10, 100}

I Y (0) ≡ 0  ITE inference is counterfactual inference

I Y (1) | X ∼ N(µ(X ), σ(X )2):

I µ(X ) depends on X1,X2 smoothly

I σ(X ) ≡ 1 (homoscedastic) or σ(X ) = − log(1− Φ(X1)) (heteroscedastic)

I e(X ) ∈ [0.25, 0.5] depends on X1 smoothly



Our R package cfcausal (github.com/lihualei71/cfcausal)



Marginal coverage of CATE = E[Y (1) | X ] (sanity check)
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Marginal coverage of Y (1)
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Average length of Ĉ1(X )
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Conditional coverage of Y (1)
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Agenda

Part III: from counterfactuals to individual treatment effects



The ITE inference problem

L. and Candès, ’20

Prediction interval for individual treatment effect ITE = Y (1)− Y (0)

PX∼QX

(
ITE ∈ ĈITE(X )

)
≥ 1− α



Contrast with conditional average treatment effects

Conditional average treatment effects (CATE)

τ(x) , E[ITE | X = x ] 6= ITE

I Uncertainty of the response around the CATE function (ignored by CATE)

I Uncertainty of CATE estimators due to finite samples (impossibility result by Barber ’20)
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Summary

Conformal inference of counterfactuals and individual treatment effects is reliable

I Randomized experiments: near-exact coverage in finite samples with any black-box

I Observational studies: doubly robust guarantees of coverage



Other Uses?

I Conformalized survival predictive analysis (w/ Emmanuel Candès and Zhimei Ren)

I Medical image analysis (w/ Stephen Bates, Anastasios Angelopoulos, Jitendra Malik, and Micheal Jordan)



Conformalized survival analysis

Zhimei Ren Emmanuel Candès



Right Censored Data: Type-I Censoring
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Right Censored Data: Type-I Censoring



Right Censored Data: Type-I Censoring
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Right Censored Data: Type-I Censoring



Right Censored Data: Type-I Censoring



A reliable predictive system for survival times

Find lower predictive bound T̂lo(X ), s.t. P(T ≥ T̂lo(X )) ≥ 90%



Survival times as counterfactuals?

I Event indicator ∆ = I (T < C ):

T̃ =

{
T if ∆ = 1
C if ∆ = 0

.

I Treat T as a “potential outcome” under the “treatment” ∆ = 1?

I INVALID because “unconfoundedness” does not hold:

(T ,C ) 6⊥ I (T < C ) | X

I (Xi ,Ti )∆i=1 has shifts in both the covariate distribution and conditional survival function



Conformalized survival analysis

I Ignoring the censoring leads to a prediction problem

P(T̃ ≥ T̂lo(X )) ≥ 90% =⇒ P(T ≥ T̂lo(X )) ≥ 90%

I Potentially huge efficiency loss

I We apply weighted conformal inference on a carefully chosen subpopulation

I Near-exactness: T̂lo(X ) is valid if P(C | X ) is known (up to a multiplicative constant)

I Double robustness: T̂lo(X ) is approximately valid if P(C | X ) or P(T | X ) is estimated well

I Also useful beyond the type-I censoring
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I Tutorial on conformal inference by Emmanuel Candès at Bernoulli-IMS One World Symposium

I Conformal Inference of Counterfactuals and Individual Treatment Effects (L. and Candès, ’20)

I Conformalized Survival Analysis (Candès*, L.*, and & Ren*, ’21)

I Distribution-Free, Risk-Controlling Prediction Sets (Bates*, Angelopoulos*, L.*, Malik, and Jordan, ’21)

Thank you!

* alphabetical order or equal contribution



Double robustness of weighted split-CQR

Theorem (L. and Candès, ’20)

Assume one of the following holds:

(1) E
∣∣1/ê(X )− 1/e(X )

∣∣ = o(1);

(2) P(Y (1) = y | X = x) uniformly bounded away from 0 and ∞ and there exists δ > 0

E
[
1/ê(X )1+δ

]
= O(1), E [H(X )/ê(X )] ,E [H(X )/e(X )] = o(1),

where H(x) = max{|q̂0.05(x)− q0.05(x)|, |q̂0.95(x)− q0.95(x)|}.

Then
P(Y (1) ∈ Ĉ1(X ) | T = 0) ≥ 90%− o(1).

Furthermore, if (2) holds, then

P(Y (1) ∈ Ĉ1(X ) | T = 0,X ) ≥ 90%− oP(1).



The ITE inference problem

I Naive approach: get Ĉ1(x) and Ĉ0(x) by weighted split-CQR and set

ĈITE(x) = Ĉ1(x)− Ĉ0(x)

• Apply Bonferroni correction (5% for each potential outcome)

• P(Y (1)− Y (0) ∈ ĈITE(X )) ≥ 90% regardless of the correlation structure between Y (1) and Y (0)

I Nested approach: our focus

• Use counterfactual inference to generate ITE intervals for subjects in the study

• Generalize these intervals to subjects not in the study

 Reduces conservatism of the naive approach
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