Conformal Inference of Counterfactuals and Individual Treatment Effects

Lihua Lei

Department of Statistics, Stanford University

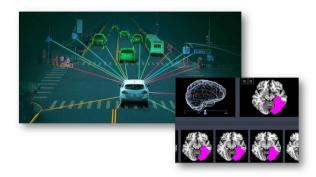
Center for Statistical Methodology, LSHTM, 2021

Collaborator

Emmanuel Candès

ML in critical applications

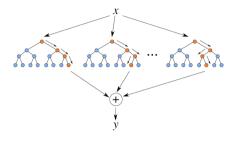
ML tools make potentially high-stakes decisions: self-driving cars, disease diagnosis, ...



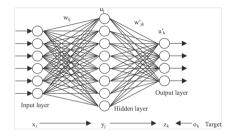
Can we have reliable uncertainty quantification (confidence) in these predictions?

Today's predictive algorithms

random forests, gradient boosting



Breiman and Friedman



LeCun, Hinton and Bengio

A snapshot of conformal inference

Developed a predictive layer that returns valid prediction intervals

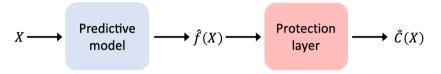
$$X \longrightarrow \begin{array}{c} \text{Predictive} \\ \text{model} \end{array} \longrightarrow \hat{f}(X) \longrightarrow \begin{array}{c} \text{Protection} \\ \text{layer} \end{array} \longrightarrow \hat{\mathcal{C}}(X)$$

• Training samples
$$(X_i, Y_i), i = 1, ..., n$$

Test point (X, Y = ?)

A snapshot of conformal inference

Developed a predictive layer that returns valid prediction intervals



• Training samples
$$(X_i, Y_i), i = 1, ..., n$$

• Test point (X, Y = ?)

Conformal inference Vovk et al. '99, Papadopoulos et al. '12, Lei et al. '18, Barber et al. '19, Romano et al. '19

Constructs predictive interval
$$\hat{C}(x)$$
 with $\mathbb{P}\left(Y \in \hat{C}(X)\right) \ge 90\%$

• Holds in finite samples for any distribution of (X, Y) and any predictive algorithm \hat{f}

From factuals to counterfactuals

From factuals to counterfactuals

Counterfactual reasoning is ubiquitous in modern science

- ► Causal inference: what would have been one's response had one taken the treatment
- > Offline policy evaluation: what would have been the outcome had the policy changed
- ► Algorithmic fairness: what would have been the prediction had one belonged to another group
- Explainable machine learning: what would have been the output had the input changed

Agenda

Part I: counterfactual predictive inference

Inference of counterfactuals?

Potential outcome (PO) framework (Neyman, '23; Rubin, '74)

- $\mathcal{T} \in \{0,1\}$ binary treatment
- Y(1), Y(0) potential outcomes
- X covariates

Super-population (i.i.d.) + SUTVA + unconfoundedness (Y(1), Y(0)) $\perp T \mid X$

Inference of counterfactuals?

Potential outcome (PO) framework (Neyman, '23; Rubin, '74)

- $\mathcal{T} \in \{0,1\}$ binary treatment
- Y(1), Y(0) potential outcomes
- X covariates

Super-population (i.i.d.) + SUTVA + unconfoundedness (Y(1), Y(0)) $\perp T \mid X$

Find interval estimate $\hat{C}_1(X)$ s.t. $\mathbb{P}(Y(1) \in \hat{C}_1(X) \mid T = 0) \ge 90\%$

Inference of counterfactuals?

Causal diagram (DAG) framework (Pearl, '95)

- $\mathcal{T} \in \{0,1\}$ binary treatment
- Y₁, Y₀ counterfactuals
- X covariates

> Assumptions: super-population (i.i.d.) + X satisfying the backdoor criterion

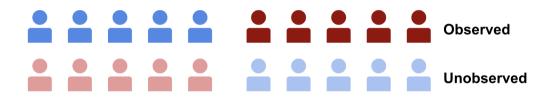
Find interval estimate $\hat{\mathcal{C}}_1(X)$ s.t. $\mathbb{P}(Y_1 \in \hat{\mathcal{C}}_1(X) \mid T = 0) \geq 90\%$

Assign treatment by a coin toss for each subject based on the **propensity score** e(x)

$$\mathbb{P}(ext{treated} \mid X = x) = e(x)$$

 $\mathbb{P}(ext{control} \mid X = x) = 1 - e(x)$

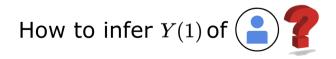
Each subject has potential outcomes (Y(1), Y(0)) and the observed outcome Y $^{
m obs}$



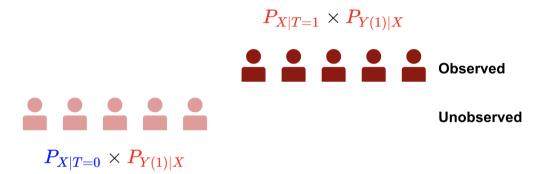
SUTVA
$$Y^{
m obs} = Y(1)$$

 $Y^{
m obs} = Y(0)$

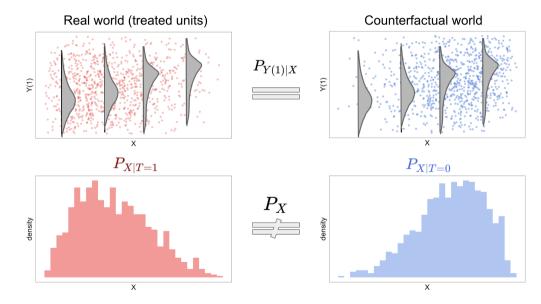
Observed



Observed



Distribution mismatch! Covariate shift



Use i.i.d. samples (observed treated units) from $P_{X|T=1} \times P_{Y(1)|X}$ to construct $\hat{C}_1(X)$ with

 $\mathbb{P}(Y(1) \in \hat{\mathcal{C}}_1(X)) \geq 90\%$ under $P_{X|T=0} imes P_{Y(1)|X}$

Use i.i.d. samples (observed treated units) from $P_{X|T=1} \times P_{Y(1)|X}$ to construct $\hat{C}_1(X)$ with $\mathbb{P}(Y(1) \in \hat{C}_1(X)) \ge 90\%$ under $P_{X|T=0} \times P_{Y(1)|X}$

Covariate shift
$$w(x) \triangleq \frac{dP_{X|T=0}}{dP_{X|T=1}}(x) \propto \frac{1-e(x)}{e(x)}$$

Conformal Inference

Vovk et al. ('99), Papadopoulos et al. ('12), Lei et al. ('18)

$$(X_i, Y_i) \stackrel{i.i.d.}{\sim} \mathcal{P}_{\mathbf{X}} \times \mathcal{P}_{Y|X} \Longrightarrow \mathbb{P}_{(X,Y) \sim \mathcal{P}_{\mathbf{X}} \times \mathcal{P}_{Y|X}} (Y \in \hat{\mathcal{C}}(X)) \ge 90\%$$

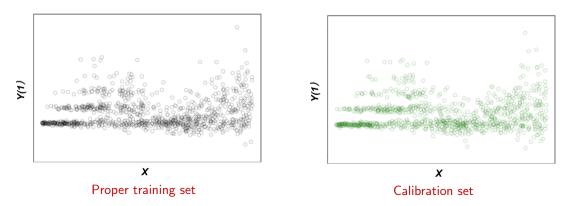
Weighted Split Conformalized Quantile Regression (CQR)

Tibshirani, Barber, Candès, Ramdas ('19); Romano, Patterson, Candès ('19)

$$(X_i, Y_i) \stackrel{i.i.d.}{\sim} \mathcal{P}_{\mathbf{X}} \times \mathcal{P}_{\mathbf{Y}|\mathbf{X}} \Longrightarrow \mathbb{P}_{(X,Y)\sim \mathcal{Q}_{\mathbf{X}} \times \mathcal{P}_{Y|X}}(Y \in \hat{\mathcal{C}}(X)) \geq 90\%$$

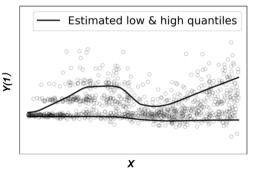
Weighted Split Conformalized Quantile Regression (CQR)

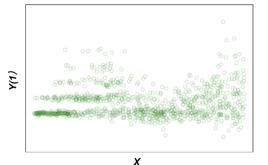
Randomly split $(X_i, Y_i^{obs})_{T_i=1}$ into two folds



Weighted Split Conformalized Quantile Regression (CQR)

Fit 5 & 95%-th quantiles of $Y(1) \mid X$ on training fold



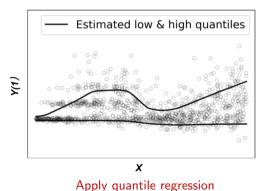


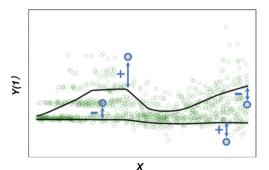
Apply quantile regression

Calibration set

Weighted Split Conformalized Quantile Regression (CQR)

Estimate 5 & 95%-th quantiles of $Y(1) \mid X$ on calibration fold

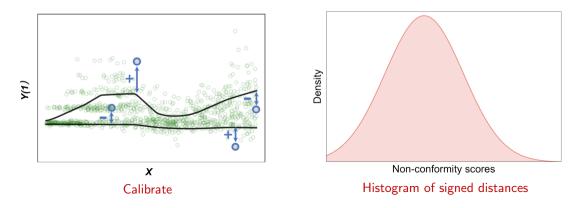




Calibrate

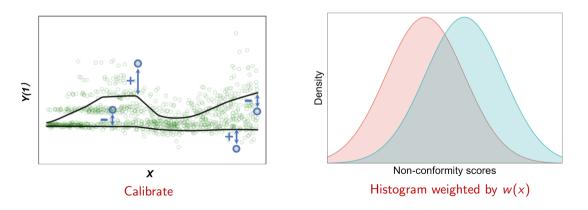
Weighted Split Conformalized Quantile Regression (CQR)

Signed distance: $V_i \triangleq \max{\{\hat{q}_{0.05}(X_i) - Y_i(1), Y_i(1) - \hat{q}_{0.95}(X_i)\}}$



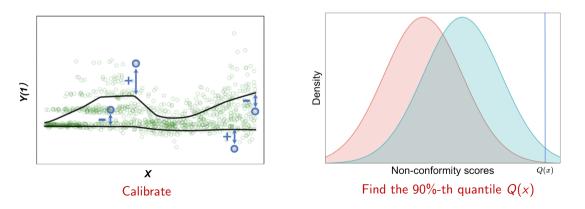
Weighted Split Conformalized Quantile Regression (CQR)

Weighted dist.: $\sum_{i=1}^{n} p_i(x) \delta_{V_i} + p_{\infty}(x) \delta_{\infty}$ where $p_i(x) = w(X_i) / \left(\sum_{i=1}^{n} w(X_i) + w(x) \right)$



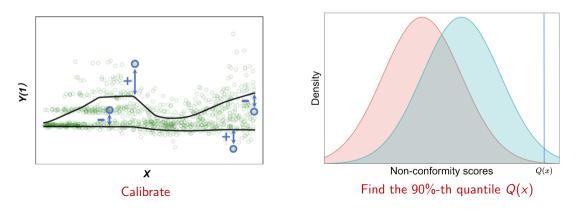
Weighted Split Conformalized Quantile Regression (CQR)

Cutoff: $Q(x) \triangleq \text{Quantile} \left(90\%, \sum_{i=1}^n p_i(x) \delta_{V_i} + p_\infty(x) \delta_\infty\right)$



Weighted Split Conformalized Quantile Regression (CQR)

Interval: $\hat{C}_1(x) = [\hat{q}_{0.05}(x) - Q(x), \hat{q}_{0.95}(x) + Q(x)]$



Near-exact counterfactual inference in finite samples

Theorem (L. and Candès, 2020, for randomized experiments)

Set w(x) = (1 - e(x))/e(x) (e(x) known) in weighted split-CQR. Then

 $90\% \leq \mathbb{P}(Y(1) \in \hat{\mathcal{C}}_1(X) \mid T=0) \leq 90\% + c/n$

Lower bound holds without extra assumption

▶ Upper bound holds if V_i's are a.s. distinct & overlap holds, and c only depends on the overlap

Near-exact counterfactual inference in finite samples

Theorem (L. and Candès, 2020, for randomized experiments)

Set w(x) = (1 - e(x))/e(x) (e(x) known) in weighted split-CQR. Then

$$90\% \leq \mathbb{P}(Y(1) \in \hat{C}_1(X) \mid T=0) \leq 90\% + c/n$$

Lower bound holds without extra assumption

▶ Upper bound holds if V_i's are a.s. distinct & overlap holds, and c only depends on the overlap

- ✓ Any conditional distribution $P_{Y(1)|X}$
- ✓ Any sample size
- $\checkmark\,$ Any procedure to fit conditional quantiles

Approximate counterfactual inference

Theorem (informal, L. and Candès, 2020, for observational studies) Let $\hat{e}(x)$ be an estimate of e(x). Set $w(x) = (1 - \hat{e}(x))/\hat{e}(x)$ in weighted split-CQR. Then $\mathbb{P}(Y(1) \in \hat{C}_1(X) \mid T = 0) \approx 90\%$ if (1) $\hat{e}(x) \approx e(x)$ OR (2) $\hat{q}_{0.05/0.95}(x) \approx q_{0.05/0.95}(x)$. Under (2), $\mathbb{P}(Y(1) \in \hat{C}_1(X) \mid T = 0, X) \approx 90\%$ with high probability (conditional coverage!)

Similar to the double robustness for ATE

Part II: Empirical results on counterfactual inference

Simulation

Variant of example from Wager and Athey ('18)

- ▶ $X \in \mathbb{R}^d$ Gaussian, independent or correlated, with $d \in \{10, 100\}$
- $Y(0) \equiv 0 \rightsquigarrow$ ITE inference is counterfactual inference
- $Y(1) \mid X \sim N(\mu(X), \sigma(X)^2)$:
 - $\mu(X)$ depends on X_1, X_2 smoothly
 - $\sigma(X) \equiv 1$ (homoscedastic) or $\sigma(X) = -\log(1 \Phi(X_1))$ (heteroscedastic)
- $e(X) \in [0.25, 0.5]$ depends on X_1 smoothly

Our R package cfcausal (github.com/lihualei71/cfcausal)

cfcausal 0.2.0

Reference Articles -

cfcausal

An R package for conformal inference of counterfactuals and individual treatment effects

Overview

This R package implements weighted conformal inference-based procedures for counterfactuals and individual treatment effects proposed in our paper. Conformal Inference of Counterfactuals and Individual Treatment Effects. It includes both the split conformal inference and cross-validation+. For each type of conformal inference, both conformalized quantile regression (CQR) and standard conformal inference are supported. It provides a pool of convenient learners and allows flexible user-defined learners for conditional mean and quantiles.

- conformalCf() produces intervals for counterfactuals or outcomes with missing values in general.
- conformalIte() produces intervals for individual treatment effects with a binary treatment under the potential outcome framework.
- conformal() provides a generic framework of weighted conformal inference for continuous outcomes.
- · conformalInt() provides a generic framework of weighted conformal inference for interval outcomes.

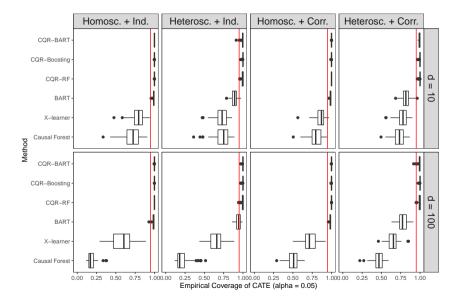
Installation

```
if (!require("devtools")){
    install.packages("devtools")
}
devtools::install_github("lihualei71/cfcausal")
```

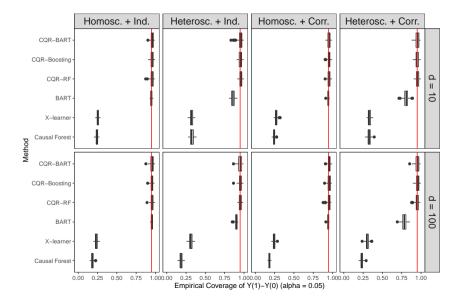
License Full license MIT + file LICENSE Citation Citing cfcausal Developers

Lihua Lei Maintainer

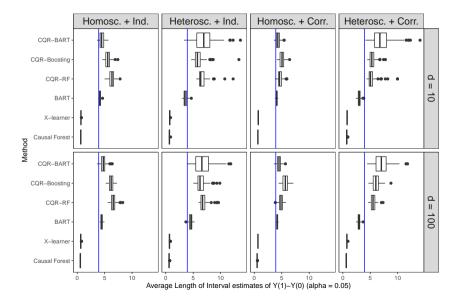
Marginal coverage of $CATE = \mathbb{E}[Y(1) \mid X]$ (sanity check)



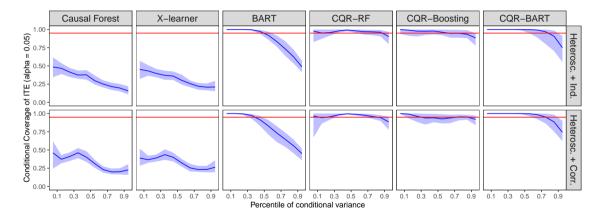
Marginal coverage of Y(1)



Average length of $\hat{C}_1(X)$

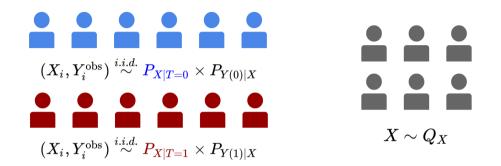


Conditional coverage of Y(1)



Part III: from counterfactuals to individual treatment effects

The ITE inference problem



L. and Candès, '20

Prediction interval for individual treatment effect ITE = Y(1) - Y(0)

 $\mathbb{P}_{X \sim Q_X} (ITE \in \hat{C}_{\mathsf{ITE}}(X)) \geq 1 - \alpha$

Conditional average treatment effects (CATE)

 $\tau(x) \triangleq \mathbb{E}[\text{ITE} \mid X = x] \neq \text{ITE}$

Conditional average treatment effects (CATE)

 $\tau(x) \triangleq \mathbb{E}[\text{ITE} \mid X = x] \neq \text{ITE}$

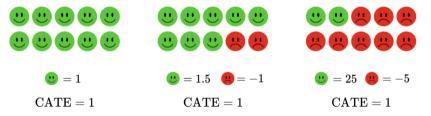
Uncertainty of the response around the CATE function (ignored by CATE)

Conditional average treatment effects (CATE)

 $\tau(x) \triangleq \mathbb{E}[\text{ITE} \mid X = x] \neq \text{ITE}$

Uncertainty of the response around the CATE function (ignored by CATE)

x : age = 30s, gender = female, height = 5'7, smoking = NO



Conditional average treatment effects (CATE)

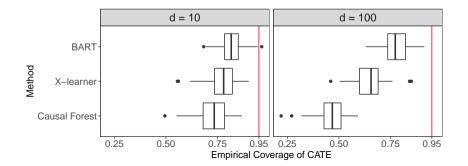
 $\tau(\mathbf{x}) \triangleq \mathbb{E}[\text{ITE} \mid \mathbf{X} = \mathbf{x}] \neq \text{ITE}$

- Uncertainty of the response around the CATE function (ignored by CATE)
- ▶ Uncertainty of CATE estimators due to finite samples (impossibility result by Barber '20)

Conditional average treatment effects (CATE)

 $\tau(\mathbf{x}) \triangleq \mathbb{E}[\text{ITE} \mid \mathbf{X} = \mathbf{x}] \neq \text{ITE}$

- Uncertainty of the response around the CATE function (ignored by CATE)
- ▶ Uncertainty of CATE estimators due to finite samples (impossibility result by Barber '20)



Conditional average treatment effects (CATE)

 $\tau(\mathbf{x}) \triangleq \mathbb{E}[\text{ITE} \mid \mathbf{X} = \mathbf{x}] \neq \text{ITE}$

Judea Pearl @yudapearl · 4d

I have been reading several papers recently where the term "individualized treatment effect" is wrongly defined by E[Y(1)-Y(0)| C=ci] and ci is a set of characteristics associated with individual i. See

people.ee.duke.edu/~lcarin/bv-nic....

Warning: This is still population-based 1/2

♀1 1210 ♡77 企

Judea Pearl @yudapearl · 4d

treatment effect, for subpopulation C=ci. To be distinguished from truly individualized effect Y_i(1)-Y_i(0) as is treated (and bounded) here: ucla.in/ 39Ey8sU

See also Causality section 11.9.1. Watch out for possible confusions.

♀1 1↓2 ♡22 企

Conformal inference of counterfactuals and individual treatment effects is reliable

- Randomized experiments: near-exact coverage in finite samples with any black-box
- Observational studies: doubly robust guarantees of coverage

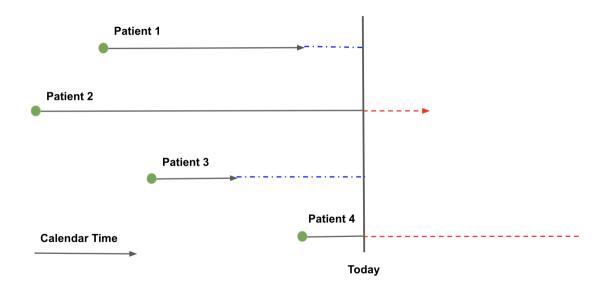
Other Uses?

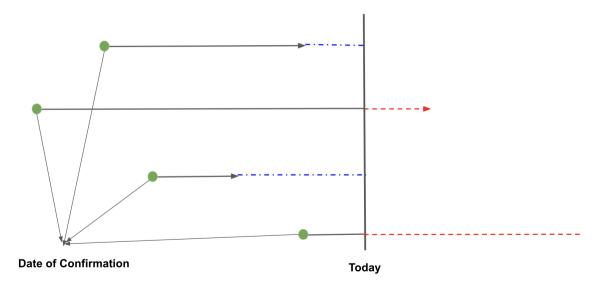
- ► Conformalized survival predictive analysis (w/ Emmanuel Candès and Zhimei Ren)
- ▶ Medical image analysis (w/ Stephen Bates, Anastasios Angelopoulos, Jitendra Malik, and Micheal Jordan)

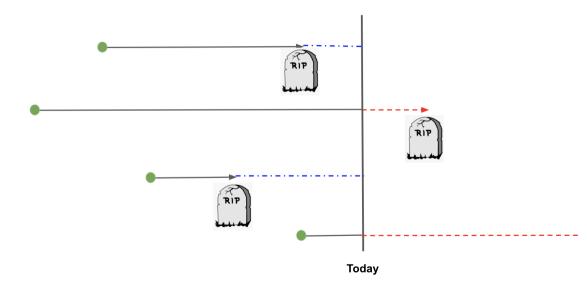
Conformalized survival analysis

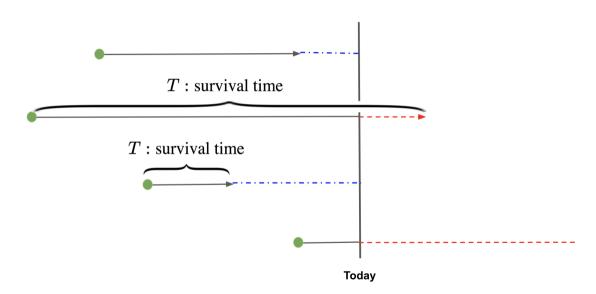
Emmanuel Candès

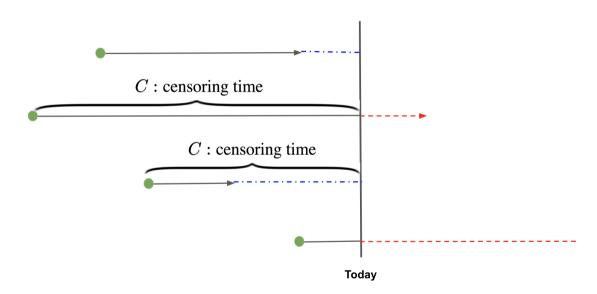
Zhimei Ren

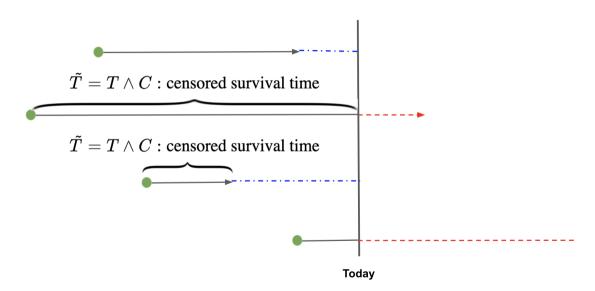


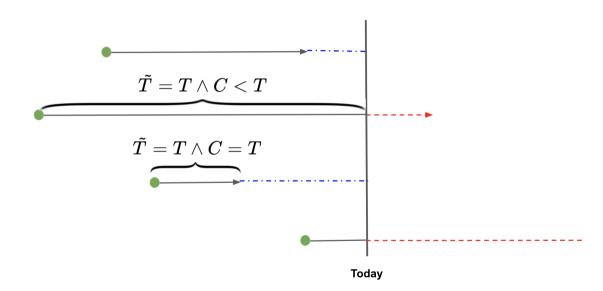




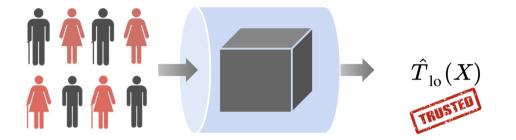








A reliable predictive system for survival times



Patient-level data "Conformal wrapper" Lower confidence bound

Find lower predictive bound $\hat{T}_{lo}(X)$, s.t. $\mathbb{P}(T \geq \hat{T}_{lo}(X)) \geq 90\%$

Survival times as counterfactuals?

• Event indicator
$$\Delta = I(T < C)$$
:
 $\tilde{T} = \begin{cases} T & \text{if } \Delta = 1 \\ C & \text{if } \Delta = 0 \end{cases}$

• Treat T as a "potential outcome" under the "treatment" $\Delta = 1$?

▶ INVALID because "unconfoundedness" does not hold:

 $(T, C) \not\perp I(T < C) \mid X$

 $(X_i, T_i)_{\Delta_i=1}$ has shifts in both the covariate distribution and conditional survival function

Conformalized survival analysis

Ignoring the censoring leads to a prediction problem

$$\mathbb{P}(ilde{\mathcal{T}} \geq \hat{\mathcal{T}}_{ ext{lo}}(X)) \geq 90\% \Longrightarrow \mathbb{P}(op \geq \hat{\mathcal{T}}_{ ext{lo}}(X)) \geq 90\%$$

Potentially huge efficiency loss

Conformalized survival analysis

Ignoring the censoring leads to a prediction problem

$$\mathbb{P}(ilde{\mathcal{T}} \geq \hat{\mathcal{T}}_{ ext{lo}}(X)) \geq 90\% \Longrightarrow \mathbb{P}(op \geq \hat{\mathcal{T}}_{ ext{lo}}(X)) \geq 90\%$$

- Potentially huge efficiency loss
- ▶ We apply weighted conformal inference on a carefully chosen subpopulation
- ▶ Near-exactness: $\hat{T}_{lo}(X)$ is valid if $P(C \mid X)$ is known (up to a multiplicative constant)

▶ Double robustness: $\hat{T}_{lo}(X)$ is approximately valid if $P(C \mid X)$ or $P(T \mid X)$ is estimated well

Also useful beyond the type-I censoring

- ▶ Tutorial on conformal inference by Emmanuel Candès at Bernoulli-IMS One World Symposium
- ► Conformal Inference of Counterfactuals and Individual Treatment Effects (L. and Candès, '20)
- Conformalized Survival Analysis (Candès*, L.*, and & Ren*, '21)
- Distribution-Free, Risk-Controlling Prediction Sets (Bates*, Angelopoulos*, L.*, Malik, and Jordan, '21)

Thank you!

^{*} alphabetical order or equal contribution

Double robustness of weighted split-CQR

Theorem (L. and Candès, '20)

Assume one of the following holds:

(1) $\mathbb{E} |1/\hat{e}(X) - 1/e(X)| = o(1);$ (2) $\mathbb{P}(Y(1) = y \mid X = x)$ uniformly bounded away from 0 and ∞ and there exists $\delta > 0$ $\mathbb{E} [1/\hat{e}(X)^{1+\delta}] = O(1), \quad \mathbb{E} [H(X)/\hat{e}(X)], \mathbb{E} [H(X)/e(X)] = o(1),$ where $H(x) = \max\{|\hat{q}_{0.05}(x) - q_{0.05}(x)|, |\hat{q}_{0.95}(x) - q_{0.95}(x)|\}.$

Then

$$\mathbb{P}(Y(1)\in \hat{\mathcal{C}}_1(X)\mid \mathcal{T}=0)\geq 90\%-o(1).$$

Furthermore, if (2) holds, then

$$\mathbb{P}(Y(1)\in \hat{\mathcal{C}}_1(X)\mid T=0,X)\geq 90\%-o_{\mathbb{P}}(1).$$

The ITE inference problem

Naive approach: get $\hat{C}_1(x)$ and $\hat{C}_0(x)$ by weighted split-CQR and set

$$\hat{C}_{\mathrm{ITE}}(x) = \hat{C}_1(x) - \hat{C}_0(x)$$

- Apply Bonferroni correction (5% for each potential outcome)
- $\mathbb{P}(Y(1) Y(0) \in \hat{C}_{ITE}(X)) \ge 90\%$ regardless of the correlation structure between Y(1) and Y(0)

The ITE inference problem

Naive approach: get $\hat{C}_1(x)$ and $\hat{C}_0(x)$ by weighted split-CQR and set

$$\hat{C}_{\mathrm{ITE}}(x) = \hat{C}_1(x) - \hat{C}_0(x)$$

- Apply Bonferroni correction (5% for each potential outcome)
- $\mathbb{P}(Y(1) Y(0) \in \hat{C}_{ITE}(X)) \ge 90\%$ regardless of the correlation structure between Y(1) and Y(0)

Nested approach: our focus

- Use counterfactual inference to generate ITE intervals for subjects in the study
- Generalize these intervals to subjects not in the study
- \rightsquigarrow Reduces conservatism of the naive approach