Routes taken and length of stay after hospital admission with COVID-19: Results and statistical challenges

Centre for Statistical Methodology seminar

Ruth Keogh, Karla Diaz-Ordaz Department of Medical Statistics

Different investigation types

- I. Description
- **II.** Prediction

III. Causality and explanation

Hernan, Hsu, Healy. A second chance to get causal inference right: a classification of data science tasks. Chance 2019; 32:42-49.

Different investigation types

I. Description

Today!

II. Prediction

Elizabeth Williamson, CSM seminar, 2nd December Predicting risk of COVID-19 mortality in the general population

III. Causality and explanation

Karla Diaz-Ordaz, Ruth Keogh, CSM seminar, 9th December

Emulating target trials to estimate the effects of dynamic ventilation strategies for patients hospitalised with Covid-19

Hernan, Hsu, Healy. A second chance to get causal inference right: a classification of data science tasks. Chance 2019; 32:42-49.

Data

International Severe Acute Respiratory and emerging Infections Consortium WHO Clinical Characterisation Protocol UK (ISARIC WHO CCP-UK)

- Established following the H1N1 pandemic (2009) and emergence of MERS (2012)
- Key component is the COVID19 Clinical Information Network (CO-CIN)

COVID19 Clinical Information Network (CO-CIN)

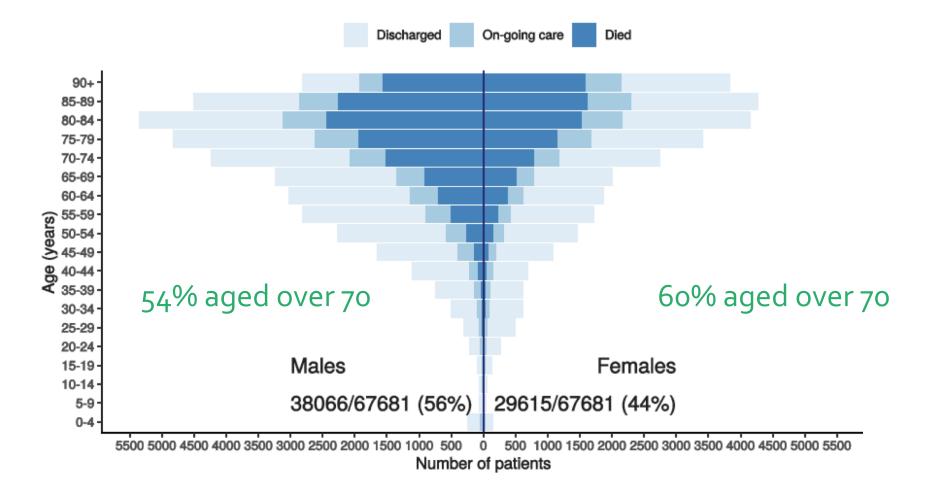
- clinical care data in near-real time from 260 hospitals
- patients admitted to hospital in England, Scotland, and Wales since January 2020
- >100,000 patients included

Docherty AB, Harrison EM, Green CA, et al. Features of 20,133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020;369:m1985. doi: https://doi.org/10.1136/bmj.m1985

- 1. What are the risks of ICU admission and death?
 - by sex, age, presence of comorbidities
- 2. How do patients progress through their hospital stay?
 - by sex, age, presence of comorbidities
- 3. How long do people stay in the hospital ward and in ICU?
- 4. What are the risks of hospital admission?
 - by sex, age, presence of comorbidities

We undertook a descriptive analysis using CO-CIN data on 43256 people admitted to hospital between 11 March and 19 July with proven or high likelihood of SARS-Cov-2 infection

CO-CIN data characteristics



https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/907617/s065 2-dynamic-co-cin-report-sage-48.pdf

CO-CIN data characteristics

YES

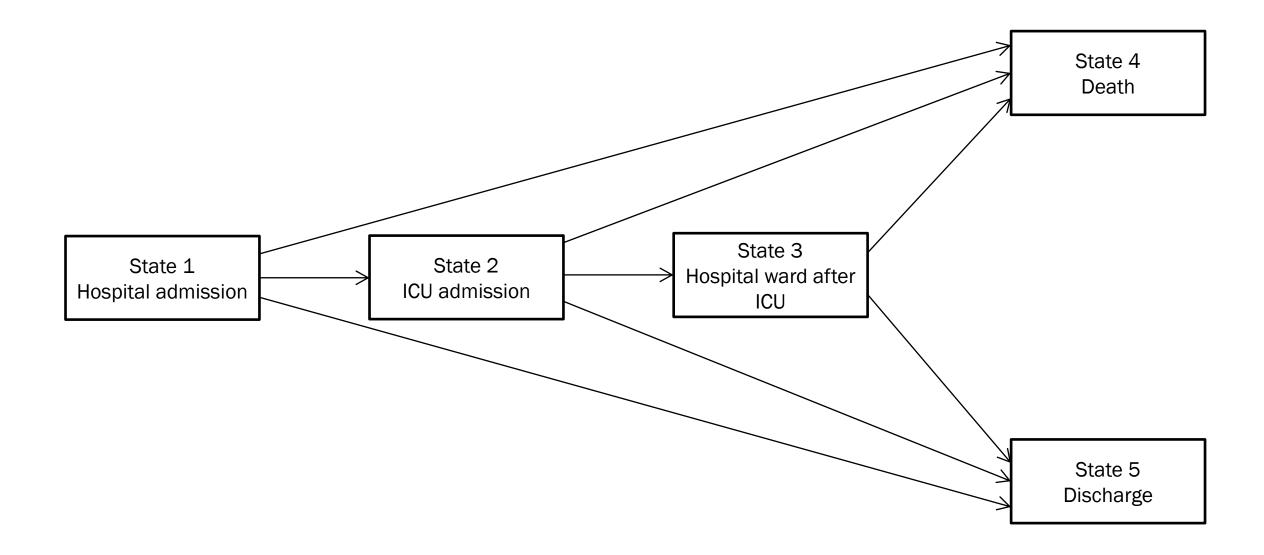
Unknown

NO

- 80% of patients had at least one comorbidity
- Many patients with multiple comorbidities

Chronic cardiac disease Chronic pulmonary disease Chronic kidney disease Dementia -Diabetes without complications Asthma Chronic neurological disorder Rheumatologic disorder Obesity Malignancy Diabetes with complications Smoking Chronic hematologic disease Malnutrition · Moderate/severe liver disease Mild Liver disease AIDS/HIV 25% 50% 75% 0% 100% Proportion of patients with comorbidities (%)

Multi-state model



- 1. What are the risks of ICU admission and death?
 - by sex, age, presence of comorbidities
- 2. How do patients progress through their hospital stay?
 - by sex, age, presence of comorbidities
- 3. How long do people stay in the hospital ward and in ICU?
- 4. What are the risks of hospital admission?
 - by sex, age, presence of comorbidities

We undertook a descriptive analysis using CO-CIN data on 43256 people admitted to hospital between 11 March and 19 July with proven or high likelihood of SARS-Cov-2 infection

1. What are the risks of ICU admission and death?

Methods: risk of death

Aim: to estimate risk of death by age group and sex

- For all individuals
- For individuals with each comorbidity individually
- For individuals with no comorbidities

Considerations

- Discharge from hospital is a competing event
- What about a standard survival analysis with 'censoring' at discharge doesn't take into account that people discharged are no longer at risk of death in hospital

Methods

- Fine & Gray analysis for competing risks
- Each model includes age as a continuous variable modelled using a spline
- Results converted into cumulative incidences (aka 'risks')

Absolute risk of death: males

Absolute risk of death: females

Risk ratios for death: males

Risk ratios for death: females

Methods: risk of ICU admission

Aim: to estimate risk of ICU admission by age group and sex

- For all individuals
- For individuals with each comorbidity individually
- For individuals with no comorbidities

Considerations

- Death and discharge from hospital are competing events

Methods

- Fine & Gray analysis for competing risks
- Each model includes age as a continuous variable modelled using a spline
- Results converted into cumulative incidences (aka 'risks') by age group

Absolute risk of ICU admission: males

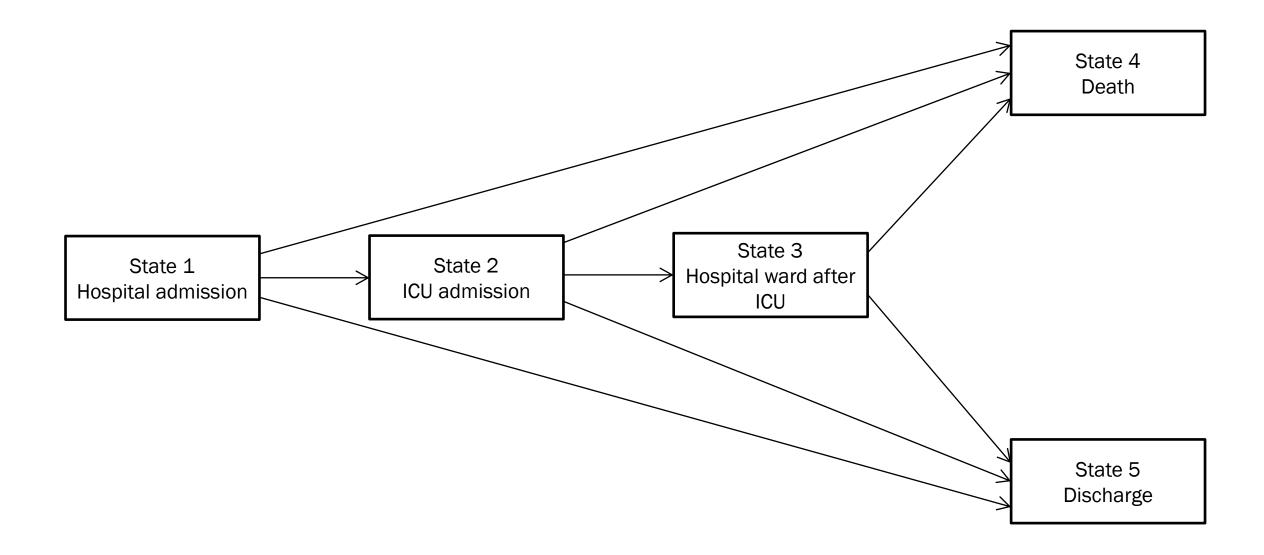
Absolute risk of ICU admission: females

Risk ratios for ICU admission: males

Risk ratios for ICU admission: females

2. How do patients progress through their hospital stay?

Multi-state model



Methods

Aim

to estimate the probability of being in a given state at a given day post-admission, by age and sex

Methods

non-parametric multi-state modelling analysis by age group

Putter H et al. Tutorial in biostatistics: Competing risks and multi-state models. Statist. Med. 2007; 26:2389–2430.

mstate package in R

Multi-state model: males

Probability of being in a given state at x days after hospital admission

- In hospital
- In ICU
- In hospital (post ICU)
- Death
- Discharged

Multi-state model: females

Probability of being in a given state at x days after hospital admission

- In hospital
- In ICU
- In hospital (post ICU)
- Death
- Discharged

3. How long do people stay in the hospital ward and in ICU?

Methods

- Some studies have used the observed distribution of time spent in different states, ignoring those who remain in hospital/were censored
-this gives biased estimates
- Expected length of stay can be estimated using the multi-state modelling analysis

Beyersmann J, Putter H. A note on computing average state occupation times. Demographic Research 2014; Volume 30: Article 62.

Expected length of stay

 X_t : state of a patient at time tExpected time spent in state $k = \int_0^\infty \Pr(X_u = k) du$

Expected length of stay

Males		Females		
Location	Expected length of stay in days (95% CI)		Location	Expected length of stay in days (95% CI)
In hospital (pre-ICU)	RESULTS OMITTED		In hospital (pre-ICU)	RESULTS OMITTED
In ICU			In ICU	
In the ward after ICU			In the ward after ICU	

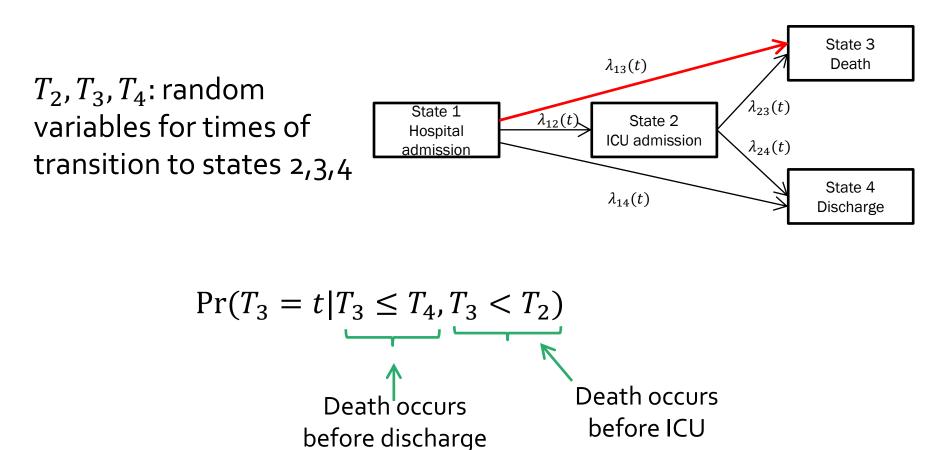
Older patients tended to spend more time in hospital, but less time in ICU (conditional on going to ICU)

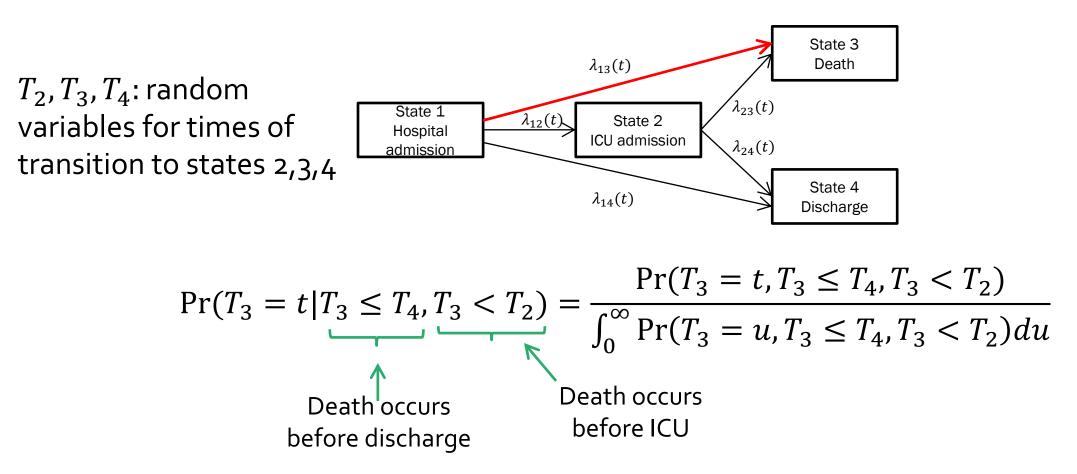
Question posed by LSHTM mathematical modelling team

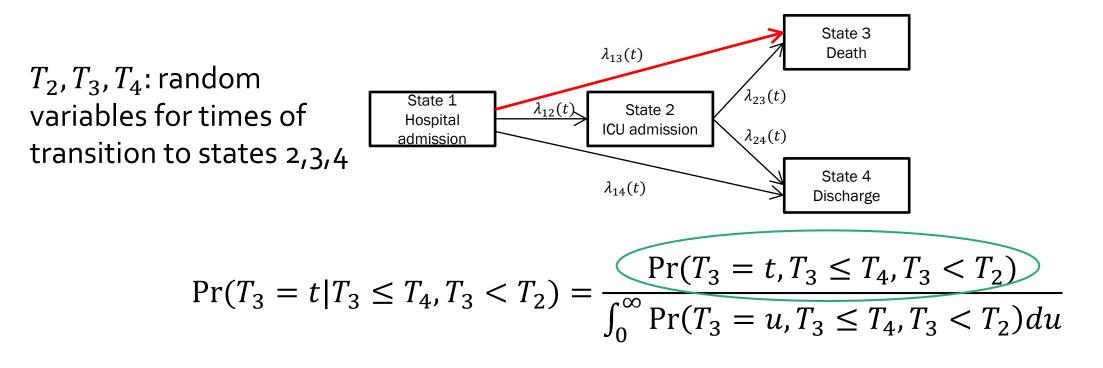
What is the distribution of time spent in different states <u>conditional on what</u> <u>subsequently happens to the patient</u>?

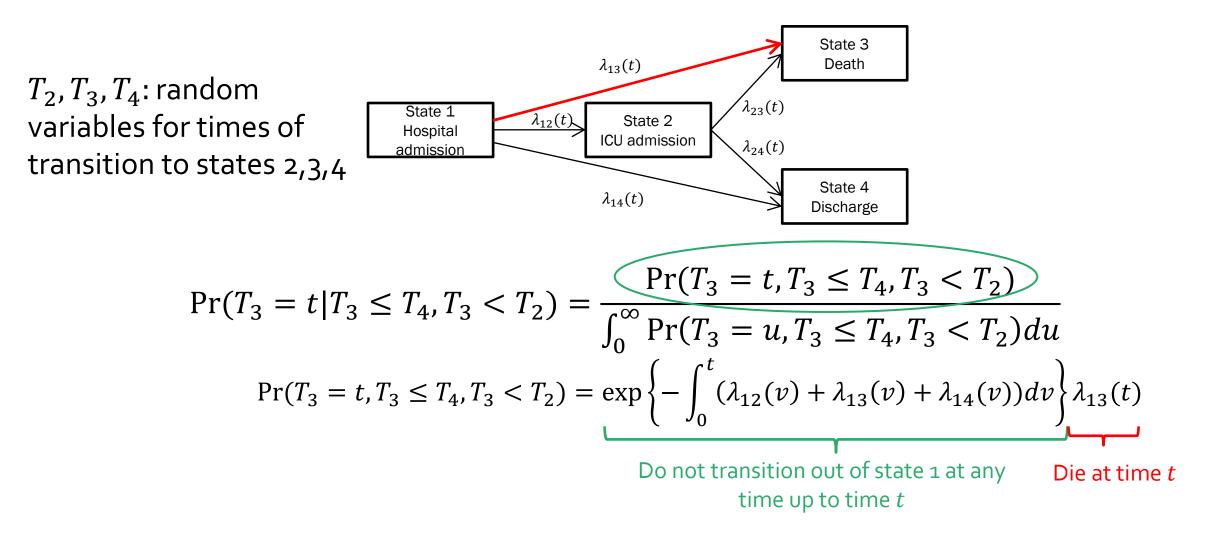
e.g. Time spent in hospital in those who follow the pathways Hospital \rightarrow Death/Discharge Hospital \rightarrow ICU \rightarrow Ward \rightarrow Death/Discharge

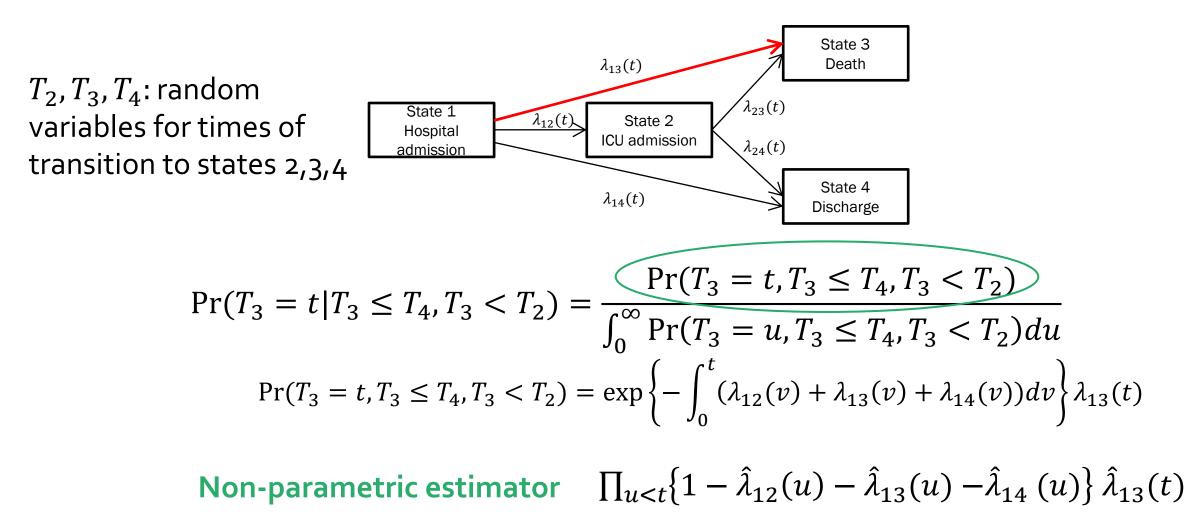
- Usually we don't like to condition on things that happen in the future!
- For computational reasons simulated patients are assigned to a group that will follow a specific pathway

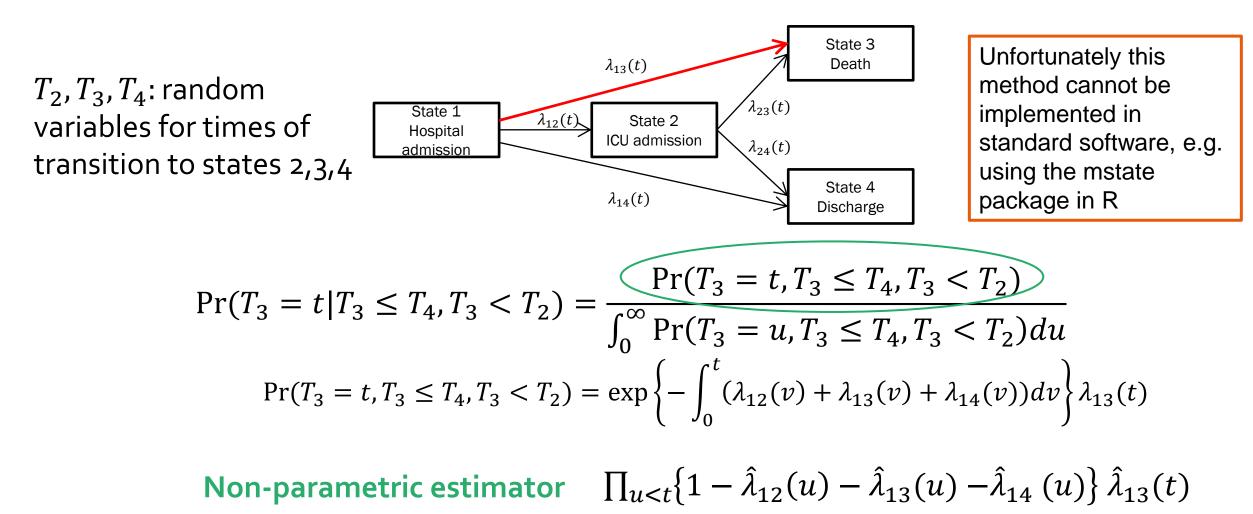




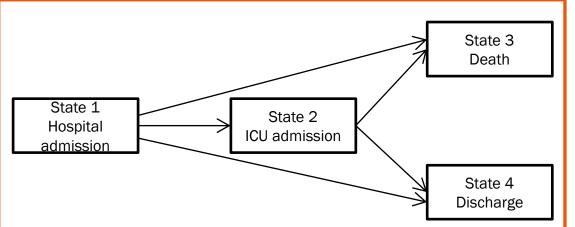




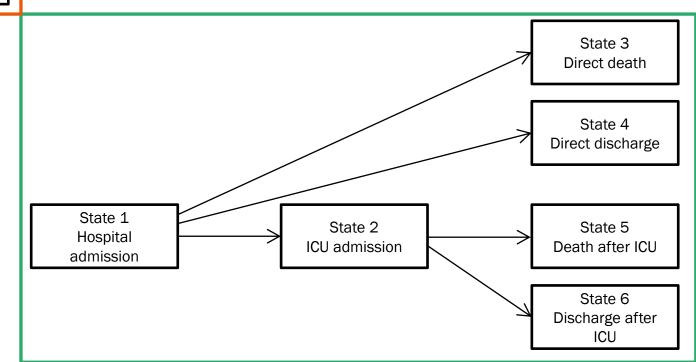




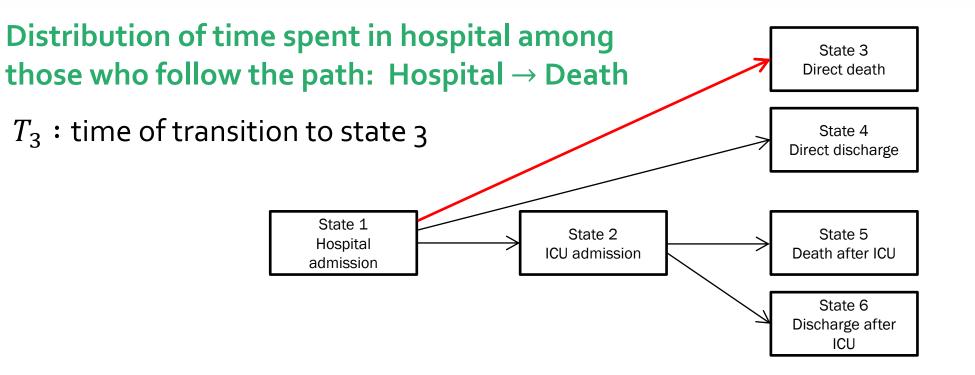
Alternative approach



- Alternative way of thinking about the multi-state model
- Suggested by Hein Putter
- Enables the conditional length of stay distributions to be estimated using the output (with some effort!) from mstate

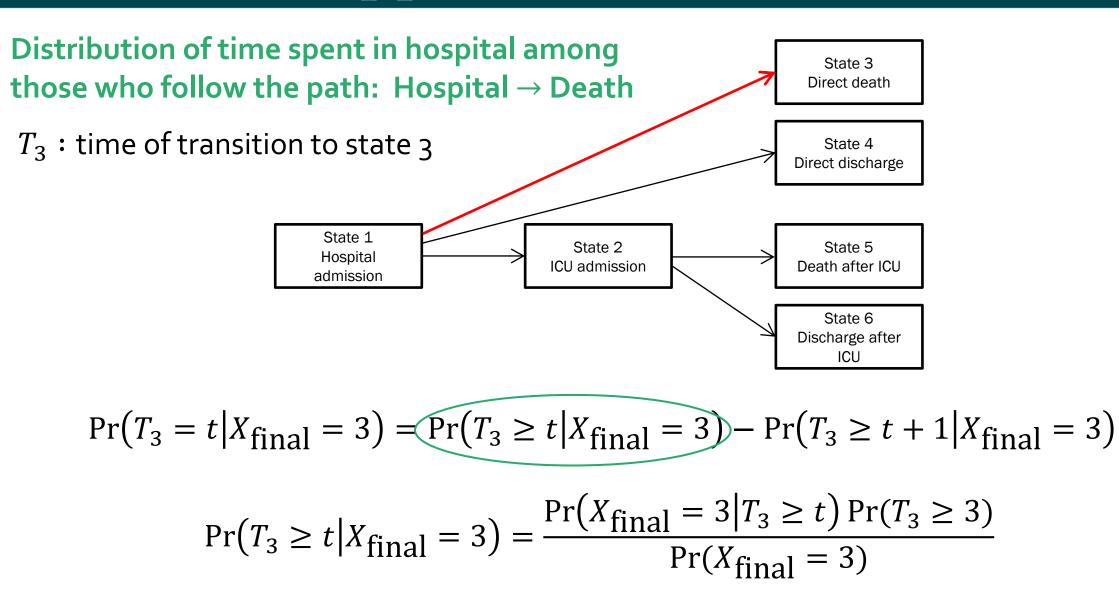


Alternative approach



$$\Pr(T_3 = t | X_{\text{final}} = 3) = \Pr(T_3 \ge t | X_{\text{final}} = 3) - \Pr(T_3 \ge t + 1 | X_{\text{final}} = 3)$$

Alternative approach



Application in CO-CIN

Distribution of time spent in hospital

Hospital \rightarrow Death/discharge

 $\textbf{Hospital} \rightarrow \textbf{ICU} \rightarrow \textbf{Ward} \rightarrow \textbf{Death/discharge}$

RESULTS OMITTED

4. What are the risks of hospital admission?

Risks of hospitalisation with COVID-19 for individuals with vs without long term conditions

- asthma, cancer, diabetes, heart disease, lung disease, neurological condition, obesity, none
- by age category and sex

Recall we have access to the CO-CIN data on 43256 people admitted to hospital between 11 March and 19 July with proven or high likelihood of SARS-Cov-2 infection

Q4: Risks of hospitalisation

• we want probability (in the population, denoted by a super-index 0) of being a hospitalised case D = 1 given comorbidity G_j and age group A_k

$$P^0(D = 1 | G_j = 1, A_k = 1)$$

 How to estimate something resembling original question using data from hospitalised cases only?

By Bayes' rule

$$=\frac{P^{0}(G_{j}=1|D=1,A_{k}=1)P^{0}(D=1|A_{k}=1)}{P^{0}(G_{j}=1|A_{k}=1)}$$

Can estimate from our data

• We need to either (a) get data for those terms, or (b) somehow, avoid them

Strategy

- To estimate $P^0(G_j = 1 | A_k = 1)$ use Health Survey from England (HSE) 2019 data
- And we can get rid of $P^0(D = 1 | A_k = 1)$ by changing estimand
- Note that the expression for hospitalisation risk in those without comorbidity G_i is

$$P^{0}(D = 1|G_{j} = 0, A_{k} = 1) = \frac{P^{0}(G_{j} = 0|D = 1, A_{k} = 1)P^{0}(D = 1|A_{k} = 1)}{P^{0}(G_{j} = 0|A_{k} = 1)}$$

• so that the red term does not appear in the risk ratio for being hospitalised

$$\frac{P^{0}(D = 1 | G_{j} = 1, A_{k} = 1)}{P^{0}(D = 1 | G_{j} = 0, A_{k} = 1)}$$

Risk ratios estimation

• Risk ratios:

the proportion of hospitalised people by age no longer appears!

$$\frac{\mathcal{P}^{0}(D=1|G_{j}=1,A_{k}=1)}{\mathcal{P}^{0}(D=1|G_{j}=0,A_{k}=1)} = \frac{\mathcal{P}^{0}(G_{j}=1|D=1,A_{k}=1)/\mathcal{P}^{0}(G_{j}=1|A_{k}=1)}{\mathcal{P}^{0}(G_{j}=0|D=1,A_{k}=1)/\mathcal{P}^{0}(G_{j}=0|A_{k}=1)}$$
estimated by observed proportions in case-only data estimated using HSE data

- ONS 2020 population projections by age used to standardised HSE estimates
- This is known as "case-only" design (with associated analytical techniques) suggested in the 90s

- Conditional on being in hospital with COVID-19, the age-sex specific risk ratios of having each comorbidity are the same in COCIN and the general UK population
- the age-sex specific risk ratios of having each comorbidity in the population was unchanged at the beginning of the epidemic, and thus can be estimated by the latest HSE data
- The comorbidities are measured in an equivalent way across HSE and COCIN
 - HSE obesity (BMI=30+) vs COCIN clinician-defined (possibly 40+)
 - HSE long-term conditions questionnaire used for cancer, heart, lung and neurological disease **only in those 16+ years old**

Relative risks of hospitalisation in Males over 50

RESULTS OMITTED

RR Hospitalisation with COVID in females over 50

RESULTS OMITTED

Discussion and Conclusions

Conclusions

- As has been noted before, age is the factor most strongly associated with higher mortality.
- By contrast, risk of ICU admission was higher in younger patients.
- We see there is strong effect modification by age on the "effect" of each comorbidity
- these "effects" are different for each of the outcomes considered:
 - mortality: RR for diabetes within age groups tended to be >1
 - ICU admission: Patients with comorbidities were also less likely to be admitted to ICU
 - hospital admission: most comorbidities resulted in RR >1 within age groups, except for obesity and asthma

- There was some missing data on comorbidities. We performed a complete cases analysis
- The results have to be considered in the context of the small numbers for some comorbidities in the very elderly
- For the relative risks of hospitalisation, where we used HSE. A limitation is the differences in how the survey and the COCIN data collection measure the comorbidities of interest

The scientific questions were relatively straightforward...

- but the nature of the patients' outcomes meant that there is a need to deal with competing risks carefully
- it is not always straightforward to answer the questions with the data at hand. Estimating risk of hospitalisation using only hospital data is not possible, but statistical methods allowed us to estimate relative risks by using supplemental information
- the information needed for mathematical modelling is not always aligned to how we (statisticians) think about state transitions, and again, we needed to extend statistical methodology in order to estimate conditional length of stay

Acknowledgements

Prof Nick Jewell, LSHTM

Royal Society: Rapid Assistance in Modelling the Pandemic (RAMP)

Data

• ISARIC COVID19 Clinical Information Network (CO-CIN)

Funding

- Ruth Keogh: UKRI Future Leaders Fellowship
- Karla Diaz-Ordaz: Royal Society Wellcome Trust Sir Henry Dale Fellowship