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Overview

You may think that statistical causal inference is about inferring

causation. You may think that it can not be tackled with standard

statistical tools, but requires additional structure, such as

counterfactual reasoning, potential responses or graphical

representations. I shall try to disabuse you of such woolly

misconceptions by locating statistical causality firmly within the

scope of traditional statistical decision theory. From this viewpoint,

the enterprise of “statistical causality” could fruitfully be rebranded

as “assisted decision making”.
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Statistics 101
Simple 2-sample experiment

I N = n0 + n1 individuals randomly sampled from relevant
population [headache sufferers]

I n0 randomly assigned to inactive control (c, 0) [chalk]
I responses Y0j : j = 1, . . . , n0 [log-duration of headache]

I n1 randomly assigned to active treatment (t, 1) [aspirin]
I responses Y1j : j = 1, . . . , n1

I Model: Yij ∼ Pi = N (µi , σ
2), all independently

Effect of treatment? Compare P1 and P0 – e.g., µ1 − µ0

I Purely distributional comparison
I Inference by e.g. 2-sample t-test.

Question: What about “potential responses?”
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Potential Response Approach
Conceive of each unit u having two pre-existing potential
responses:

I Yu0 if given chalk

I Yu1 if given aspirin

I pairs (Yu0,Yu1) from common bivariate distribution

I “individual causal effect”: ICEu := Yu1 − Yu0

I We can observe at most one of Yu1, Yu0 — for treatment
actually taken — the other then being “missing data”
I so ICEu is never observable
I cannot estimate dependence/correlation ρ between Y0 and Y1

I Fundamental Problem of Causal Inference ?
I or just of this approach to causal inference ??
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Problems with ICE
We can estimate the average causal effect:

ACE := E(ICE) = E(Y1 − Y0)
= E(Y1)− E(Y0)

I unaffected by unknowable dependence between Y1 and Y0

I could estimate by Y 1 − Y 0

However, consider the individual ratio effect, IRE := Y1/Y0

I We can not estimate ARE := E(IRE)
I — since this involves the unknowable dependence between Y1

and Y0.

For the same reason we cannot estimate the “effect of treatment
on the observed treated”, E(ICE | Y1 = y).
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Neyman’s null hypothesis
Let Ỹj (j = 0, 1) be the average of Yuj over all N units in the
experiment
I unobservable

Neyman (1935) interpreted “No effect of treatment” as:

Ỹ0 = Ỹ1 (ĨCE = 0)

and showed that, for this null hypothesis, the usual (t, F ) test
I is unbiased in a simple randomised experiment
I but not when the logic is extended to more complex designs,

e.g. Latin Square
I unless we assume treatment-unit additivity:

I ICEu = Yu1 − Yu0 the same for all units

I requires ρ = 1 — an unknowable condition
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Fisher’s null hypothesis
???
I Neyman’s null hypothesis depends crucially on which units are

in the experiment
I So not sensible. . .
I Fisher: “the hypothesis to be tested was. . . that differences of

treatment made no difference to the yields”
I Yu0 = Yu1, all u (ICEu ≡ 0) ???

But any performable test can only target weaker properties, e.g.:
I all observed values are exchangeable (permutation test)
I all observed values are from a common distribution

I e.g., N (µ, σ2) (t-test of µ0 = µ1)
These purely distributional hypotheses are perfectly good
interpretations of “no treatment effect”
The potential outcome machinery has not added (indeed, has
subtracted!) value
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An Alternative Approach: Decision Theory
I have a headache. Should I take aspirin?
I have to compare the hypothetical future consequences of my two
available decisions
I assess Y ∼ Pi if I were to take decision i .
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I Take aspirin if EY∼P1L(Y ) ≤ EY∼P0L(Y )

I All that is need to solve any such decision problem is the pair
of “hypothetical distributions”, P0 and P1, for response Y
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Causal Inference
I What then is “causal inference”?

I Learning about required P0, P1 with assistance of available
data (observational or – in this case – experimental)

I If I do take aspirin, I will become like (exchangeable with)
those in the treated group.
I then my response Y would be distributed as

Y ∼ P1 = N (µ1, σ
2)

I If I don’t, I will become like (exchangeable with) those in the
control group.
I then my response Y would be distributed as

Y ∼ P0 = N (µ0, σ
2)

I can learn P0, P1 from the data. Then I have all I need to solve
my decision problem:
I Take aspirin if EY∼P1L(Y ) ≤ EY∼P0L(Y ), where L(y) is a

suitable loss function
I If L(y) is linear, take aspirin if the average causal effect
µ1 − µ0 is negative
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Some comments
I No use for potential responses. We have two hypothetical

distributions for a single variable Y , not one joint distribution
for a pair of potential variables (Y0.Y1).
I In particular, no need to consider the (unknowable)

dependence between Y0 and Y1

I No need for counterfactual logic: “What would have happened
to a treated study individual, if she had not been treated?”

I No determinism/predetermination: response Y can develop
stochastically, even after application of treatment

I No missing data
I so no “fundamental problem of causal inference”

I Average causal effect is a difference of expectations,
EP1(Y )− EP0(Y ), not the expectation of a difference,
E(Y1 − Y0)

I No new principles/formulation/notation needed, only basic
Fisher and standard decision theory. We can solve our
problem without weighing it down with unnecessary baggage
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Observational Study

Suppose now that assignment of treatments to study subjects was
not done experimentally. When can we still use the data as before?
This would require post-treatment exchangeability:

I If I were to decide on treatment t, I would become
exchangeable with those in the treatment group

I if I were to decide on treatment c, I would become
exchangeable with those in the control group

NB: These can only both hold when (prior to treatment
application), the treatment and control groups are exchangeable
with each other

I so we would have to be “comparing like with like”

I ignorable treatment assignment
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Variables and Regimes
I Binary treatment variable T

I Response variable Y

I Non-stochastic regime indicator FT :
I FT = 0: (hypothetically) take treatment 0 (⇒ T = 0)
I FT = 1: (hypothetically) take treatment 1 (⇒ T = 1)
I FT = ∅: “Nature” chooses T (random)

I I am interested in comparing regimes FT = 1 and FT = 0

I I have data from FT = ∅

I I should like to use the data to assist me with my decision
problem

I So I will need to make (and justify) some connexions between
the different regimes

12 / 31



Ignorability

The simplest case is when I can assume ignorability (“like an
experiment”):

I The distribution of Y is the same in regime FT = 1 [resp., 0]
as in regime FT = ∅, conditional on T = 1 [resp., 0].

I Y is independent of FT , given T = 1 [resp., 0]

I Y ⊥⊥FT | T

T
YTF

(If not, we have confounding)
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Conditional ignorability (“no unobserved confounding”)
When ignorability fails, it might be restored if we condition on
additional information.
Call an observed variable U a sufficient covariate if:
I U ⊥⊥FT
I Y ⊥⊥FT | (T ,U)

T YTF

U

Can then estimate ACE by (“back door formula”):
ACE = E(SCEU |FT = ∅)

where we define the specific causal effect (relative to U) as
SCEU := E(Y |U,T = 1,FT = ∅)− E(Y |U,T = 0,FT = ∅).

Not possible if U unobserved—confounding
So such a variable U is an unconfounder .
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Propensity score
U a sufficient covariate, V a function of U
V will be a sufficient covariate if

T ⊥⊥U | (V ,FT = ∅)

I In the observational regime, choice of treatment depends on
U only through V

I Does not involve response variable Y
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Propensity score

T ⊥⊥U | (V ,FT = ∅)

Equivalently,
U ⊥⊥T | (V ,FT = ∅)

I Observational distribution of U, given V the same for both
treatments

I V is a balancing score for U
I V is a sufficient statistic for comparing hypotheses T = 1,

T = 0 for data U
I Minimal such V is likelihood ratio:

p(U | T = 1)/p(U | T = 0)

I Equivalently, posterior probability p(T = 1 | U)
I single variable ∈ [0, 1]
I propensity score
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Effect of treatment on the treatable

Suppose I consider that, if I had been in the study, I would have
been deemed “suitable for treatment” (i.e., exchangeable with
those for whom T = 1). Should I take the treatment?

Let S = 1 [0] denote “suitable [unsuitable] for treatment”. In the
study, T = S. I have S = 1 but have choice over T .

I should thus consider

ETT := E(Y | S = 1,T = 1)− E(Y | S = 1,T = 0)

I can estimate first term from treated group in the study — but
have no data directly relevant to second term.

17 / 31



Effect of treatment on the treatable
We can show:

ETT = E(Y |FT = ∅)− E(Y |FT = 0)
Pr(T = 1 |FT = ∅) .

— estimable if I have also observed Y in an experimental control
group.
Alternatively, if in the data we can observe a sufficient covariate U,
conditional on which both T = 0 and T = 1 are possible, we can
compute

ETT = E(SCEU |T = 1,FT = ∅).

Compare the PR definition:

ETT = E(ICE |T = 1)
= E(Y1 − Y0 |T = 1)

All above variants yield same value.
NB: Does not use information on outcome when treated
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Sequential decisions
Variables arising in sequence: L1—T1—L2—T2—Y
I L1 pre-treatment variable
I T1 first treatment — in light of L1

I L2 response to T1

I T2 second treatment — in light of L1,T1, L2

I Y response

Let s be a contemplated (possiby randomised) strategy for
choosing T1 and T2, each in the light of previous values. We want
to evaluate s, using observational data.
I Introduce non-stochastic regime indicator σ, values s and o

(observation).
I Can we evaluate E(Y |σ = s) from properties of the

observational regime σ = o?
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Sequential ignorability

 σ

T2L2T1L1 Y

Assume

L1 ⊥⊥ σ

L2 ⊥⊥ σ | (L1,T1)
Y ⊥⊥ σ | (L1,T1, L2,T2).

Robins’s G-formula for estimating E(Y |σ = s) from the
observational data follows directly.
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G-formula

p(l1, t1, l2, t2, y |σ = s) = p(l1 |σ = s)
× p(t1 | l1, σ = s)
× p(l2 | l1, t1, σ = s)
× p(t2 | l1, t1, l2, σ = s)
× p(y | l1, t1, l2, t2, σ = s)

= p(l1 |σ = o)
× p(t1 | l1, σ = s)
× p(l2 | l1, t1, σ = o)
× p(t2 | l1, t1, l2, σ = s)
× p(y | l1, t1, l2, t2, σ = o).

Now marginalise to find p(y |σ = s).
21 / 31



Compare potential response approach
Conceive of potential versions of all variables under either regime:

Πs := (Ls
1,T s

1 , Ls
2,T s

2 ,Y s)

Πo := (Lo
1,T o

1 , Lo
2,T o

2 ,Y o)

—all with a joint distribution.
Principal assumptions/constraints:
Consistency
I Lo

1 = Ls
1

I T o
1 = s(Lo

1)⇒ Lo
2 = Ls

2.
I T o

2 = s(Lo
1,T o

1 , Lo
2)⇒ Y o = Y s .

Sequential ignorability
I T o

1 ⊥⊥ (Ls
2,Y s) | Lo

1
I T o

2 ⊥⊥Y s | Lo
1 = l1,T o

1 = s(l1), Lo
2 = l2
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Instrumental variable

Suppose I can not observe U, but there is a variable Z such that:
1. Z affects T
2. Z affects the outcome Y only through T
3. Z does not share common causes with the outcome Y (“no

confounding of the effect of Z on Y ”).

Observational conditional independence properties:

T 6⊥⊥ Z
U ⊥⊥ Z
Y ⊥⊥ Z | (T ,U)

Y

T

UZ

—no causal content!
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Instrumental variable

Add regime indicator FT for causal content:

Y

T

U

FT

Z

U ⊥⊥ (Z ,FT )
Y ⊥⊥ (Z ,FT ) | (T ,U).
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Linear model
Assume

E(Y |T ,U, [Z ,FT ]) = W + β T

for some function W of U.
Let w0 = E(W ), = E(W |Z ,FT ) since U ⊥⊥ (Z ,FT )
Then

E(Y |FT = t) = w0 + β t,

I β can be interpreted causally.
I Want to identify β.

Assumptions imply

E(Y |Z ,FT = ∅) = w0 + β E(T |Z ,FT = ∅).

Then β = Cov∅(Y ,Z )/Cov∅(T ,Z ) can be estimated by the ratio
of the coefficients of Z in the sample linear regressions of Y on Z
and of T on Z .
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Wrap-up

I (EoC) Causal Inference is really about assisted decision
making

I Traditional statistical tools are adequate for this

I Arguments using potential responses are:

I unnecessary

I obscure

I complex

I potentially misleading

I Next time you are tempted to do such an analysis, think
about doing so more directly
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THANK YOU!
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