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@ Inroduction: Integrative omics for personalized cancer therapy

@ Structured penalties for drug sensitivity prediction

© Multivariate Bayesian variable selection for structured outcomes
and high-dimensional features
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Personalized cancer therapy

...aims to find the best therapy for each patient based on data
about the patient and tumor (e.g. genomic data).

one diagnosis uniform therapy variable results

targeted therapy

better results

optimal results
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Single drug or combination
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The PerCaThe project at the University of Oslo

@ > 25 key collaborators from many disciplines: math & stats,
medicine, biology, computer science, physics, ethics
e Consortium lead:

A Frigessi, K Taskén, V Kristensen, A Helland, A Kohn-Luque
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The PerCaThe project at the University of Oslo

Patient biopsy/blood
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Genomic profiling

Cell lines Synergy

Previous patients = * prediction

Data bases T
Drug combinations
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Predict sensitivity to multiple drugs Y from multi-omics X

'Y =XB +¢

@ Drug dose response S—
drug sensitivity - R

% Inhibitio!

n cell lines Ye1 .. Yem = Y Concentration

| | Source: Yang, et al. 2017

Omics characterizations

o Integrative omics

gene expression copy number mutation . Mutation
—

Copy number

Gene expression

n cell lines X1 Xz X3 =

Source: TCGA, 2013
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Predict sensitivity to multiple drugs Y from multi-omics X

@ Penalised regression and Bayesian hierarchical models

@ Use structured penalties (for B) or hyper-priors (for B or
selection indicator I" to:

@ Borrow information between experiments

@ Use prior knowledge about similarity between Y; and Y
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Typically available data (Menden et al. 2019, Figure 1*)
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Challenges and opportunities (1)

@ Small sample size

@ Several types of input data X:
E.g., gene expression, copy number, mutation
@ Multivariate response Y
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@ Unclear how to define Y
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Challenges and opportunities (2)

The data are highly structured:

O In Y: relationships between drugs, e.g. due to similar
chemical drug composition, same target genes/pathways

@ In X: relationships between molecular data sources

a Function

Memory Environment Message Product Result
Central Genome Transcriptome ~ Proteome
dogma of DNA protein) = P
b molecular t i
blology
(-
R { S
€ Datatypes < | (=

Ickstadt et al. (2018)

11/35



Introduction
000000000e

Vertical integration: genes as the common biological units

Biological unit 1 Biological unit 2

Data typ Datat
Platform A, Platform A,
Preg g X, Prepeocessing X

\—9 Common biological unit

}

Biological unit k

|

Statistical modeling
and reasoning

Ickstadt et al., 2018 )
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Structured Penalized Regression for Drug Sensitivity Prediction

Zhi (George) Zhao, Manuela Zucknick (arXiv:1902.04996)

13 /35



Structured penalities
0®00

Multi-response penalised linear regression

Objective function:

1
in{ —1Y—-1,8] —XB|>? B
gojg{mnll nBo £ + pen( )}

Standard penalised regression assigns the same penalty to all data
sources, and treats columns of Y as independent:

e Lasso: pen(B) = \[|B||,

o Elastic-net: pen(B) = A(/|[Blls, + 3(1 — a)[|B2)
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Integrative LASSO with Penalty Factors (Boulesteix et al. 2017)

o Allow different penalties for different data sources

@ Extensions of IPF-lasso to multi-response regression and to
the elastic net

IPF-lasso: pen(B)

Z)‘SHBSHh
S

1
IPF-SEN: pen(B) = 3 As(alBsllg + 5(1 — ) Bsll7,)
S

1
IPF-EN: pen(B) = ) As(as|[Bslle, + 5= as)||Bs|17,)
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(Multi-response) Tree-guided group lasso (Kim & Xing 2012)

@ Include dependencies between columns of Y in a group lasso
@ Extension to IPF-tree lasso

p
Tree lasso: pen(B) = AZ Z wu”ﬁf“”b

J=1 VG{Vint,VIeaf}

IPF-tree lasso: pen(B) = Z)\s Z Z wu”ﬁf"”@
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Simulation setup (similar to Boulesteix et al. 2017)
e Two data sources (p1 > n, p2 > n).
o 1 |B
Y = [X]_, X2] |:B1:| + E.
2

@ Let the final X = [Xy, X3] after dichotomizing X, = 1{)~(2>0}.
o Coefficient matrix B:

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3
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Some simulation results (m=24 drugs, m=100 samples)

(a) Scenario 1 (c) Scenario 2 (e) Scenario 3
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Fig 5: Comparison of MSE,, between different approaches (summary of 50
simulations runs). The three top panels are based on p; = p» = 150. The three
bottom panels are based on p; = 500 and p, = 150.
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Application to Genomics of Drug Sensitivity in Cancer data
(Garnett et al., 2012)

@ Large-scale pharmacogenomic study with n=498 cell lines and
m=97 drugs.

@ Outcome data: log(/Csp) from dose-response experiments

@ Random draws of 80% cell lines as training data and 20% as
validation data.

@ Input data:
e cancer type (po = 13)
— mandatory covariates not included in the penalty term,

o mRNA expression (p; = 2602),
e copy numbers (p, = 426) and
o DNA mutations (p; = 68)
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Results: Average performance across all drugs

TABLE 2

Prediction and the numbers of selected features in the GDSC data analysis

Method NULL# Lasso clastic net Tree-lasso
Vet - 302+1+92° 31541493 219284814941
1 ys+ 0.1% 0.1% 10.0%

mp

MSE,, (SD)
Rr2 Y (SD)

Vs*

gV S*
MSEcv (SD)
MSE,q (SD)
RZ, (SD)

f p
MSEcy (SD)*

3.360(0.027)
3.368 (0.107)
-0.014 (0.008)

OLS

3.013 (0.016)
3.199 (0.074)
0.036 (0.016)

3.200 (0,040)
3.151 (0.077)
0.051 (0.012)

[PF-lasso
TT4+11+74
0.3%

3.182 (0.037)
3.134 (0.078)
0.056 (0.014)

3.198 (0.039)
3.149 (0.077)
0.052 (0.014)

sIPF-elastic-net

252394 +41322+6596

100.0%
3.179 (0.036)
3.130 (0.076)
0.057 (0.015)

3.138 (0.040)
3.069 (0.079)
0.076 (0.019)

IPF-tree-lasso

3056745154452

10.5%
3.068 (0.035)
3.025 (0.074)
0.089 (0.018)
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Results: MSE, .| of individual drugs
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Fig 6: MSE, ;| of individual drugs (average of 10 random training-test splits).
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Results: Some examples

@ Nutlin-3a:
mechanism of action involves the p53-pathway, affected in ca.

50% of cancers in most cancer types (R\%al = 0.45)

e PD-0325901, RDEA119, CI-1040, AZD6244:
MEKT1 inhibitors with highly correlated /Csg values.

o Methotrexate:
general cytotoxic drug not targeted to specific
genes/pathways

o Nilotinib:
inhibits the BCR-ABL fusion gene characteristic for chronic
myeloid leukemia. Related to Axitinib (smaller effect).
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IPFStructPenalty summary

e Combination of IPF-penalty (for multiple omics data sources)
and tree-lasso (for hierarchical correlation structure in drug
responses) to IPF-tree-lasso

@ Development of IPF-elastic net

o Computational aspects: joint optimisation of > 2 penality
parameters is challenging.

e We employ the Interval-search algorithm EPSGO (Frohlich &
Zell 2005; Sill et al. 2014): learning a Gaussian process model
of loss function surface from visited points

@ https://github.com/zhizuio/IPFStructPenalty

@ Advantage: simple implementation, computational speed
e Disadvantage: limited options for manipulation of penalty


https://github.com/zhizuio/IPFStructPenalty

Structured selection priors
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Multivariate Bayesian variable selection for structured
outcomes and high-dimensional features:

Structured seemingly unrelated regression with MRF priors

Zhi Zhao, Marco Banterle, Alex Lewin, Manuela Zucknick
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Figure 1: Illustration of the drug groups and omics path (reproduced from
[Ruffieux, 2019]).
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BayesSUR (https://CRAN.R-project.org/package=BayesSUR)

@ Bayesian seemingly unrelated regression for variable and
covariance selection (Banterle et al., 2018)

@ Matrix formulation of the model:
Y =XB+ U,
vec(U) ~ N (0, C®1,)

e Y n X m matrix of outcomes with m x m covariance matrix C,
e X n X p matrix of predictors for all outcomes,
e B p x m matrix of regression coefficients.


https://CRAN.R-project.org/package=BayesSUR
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BayesSUR (https://CRAN.R-project.org/package=BayesSUR)

@ Bayesian seemingly unrelated regression for variable and
covariance selection (Banterle et al., 2018)

@ Matrix formulation of the model:
Y =XB+ U,
vec(U) ~ N (0, C®1,)

e Y n X m matrix of outcomes with m x m covariance matrix C,
e X n X p matrix of predictors for all outcomes,
e B p x m matrix of regression coefficients.

@ Introduce sparsity:

Bijl i, w ~ 1igN(0, w) + (1 — 747)0(Bxj)

e Binary latent indicator matrix I = {j} for variable selection
o Spike-and-slab prior on vectorised 3 = vec(B) and ~v = vec(I')
e and w ~ ZG(aw, by) and do(+) is the Dirac delta function.

25 /35
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BayesSUR (2)

vk ~ Bernoulli ;. ~ Hotspot v ~ MRF
C ~ indep HRR-B HRR-H HRR-M
C~IW dSUR-B dSUR-H dSUR-M
C ~HIWg SSUR-B SSUR-H SSUR-M

We can introduce structure/ sparsity in two places:
@ Prior for covariance matrix: C ~ HZIWg with further
hyper-prior on graph G (Banterle et al. 2018)

e Graph G encodes conditional dependence between responses.
Sparse G implies sparse precision matrix C 1.

e Sparse Seemingly Unrelated Regression (SSUR)

@ Prior for variable selection indicator ~.

e Sparsity: which covariates are associated with which responses

26 /35
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BayesSUR (3)

Options for covariance matrix structure (Banterle et al. 2018)
@ diagonal: Hierarchical Related Regression (Richardson et al 2011)
@ dense: dense Seemingly Unrelated Regressions (dSUR)
@ sparse: Sparse Seemingly Unrelated Regressions (SSUR)

N
~
w
51
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BayesSUR (3)

Options for covariance matrix structure (Banterle et al. 2018)
@ diagonal: Hierarchical Related Regression (Richardson et al 2011)
@ dense: dense Seemingly Unrelated Regressions (dSUR)
@ sparse: Sparse Seemingly Unrelated Regressions (SSUR)

Options for variable selection (j =1,--- ,p,k=1,---,m)
@ Independent Bernoulli prior:
ij]wjk ~ Ber(wj), with wj ~ Beta(aw, bw).
e Hotspot prior:
’yjk\wj-k ~ Ber(wjk), with Wjk = Ok X Tj,
ok ~ Beta(ao, bo), mj ~ Gamma(ay, by).
e Markov Random Field (MRF) prior:
f(vld, e, G) ox exp{d1lTy +e-v' G}
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MRF prior for pharmacogenomics

f(v|d, e, G) x exp{dlTy +e-~' Gy}
@ d controls the model sparsity,
@ e the strength of relations between responses and predictors,
@ G is an adjacency matrix of the structure prior knowledge.

po) (=)

Yoo Y21 Y31 M2 Y22 Y32 Y13 723 33

1 /0 0 0 0 0 0 0 0 0

Y1 | O 1 1 0 1 1 0 0 0

v31 | 0 1 1 0 1 1 0 0 0

72| 0 0 0 0 0 0 0 0 0

G=yp|l0 1 1 0 1 1 0 0 o0

v32 | O 1 1 0 1 1 0 0 0

ms| 0 0 0 0 0 0 1 0 0
Y23 | 0 0 0 0 0 0 0 0 0

733 \ 0 0 0 0 0 0 0 0 0
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Application to Genomics of Drug Sensitivity in Cancer data

@ Same data as before, but now only use m = 7 cancer drugs

@ Use MREF prior to include structure, with edges between:

o drugs: Groupl ("RDEA119","PD-0325901"," CI-1040" and
"AZD6244"); Group2 (" Nilotinib”,” Axitinib" )

genes in MAPK/ERK pathway (target of Groupl)

genes in the Ber-Abl fusion gene (target of Group2)

genes of MAPK/ERK pathway and Groupl

genes of the Ber-Abl fusion gene and Group?2

each gene feature in different data sources (GEX, CNV, MUT)
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Application to Genomics of Drug Sensitivity in Cancer data

Drugs Genes
Axitinib RDEALLD
BCh. A
BCR-ABL MUT P53 MUT
Nilot ABL.GEX N ABL.CNV
ilotinib
Axitinib Nilotinib PD-0325901

BCR.GEX BCR.CNV

AZD62414 Cl.140
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Results (I'): Which covariates are important?

PDGFRAMUT P 1
MAP2BMUT
KRASMUT BCR_ABLMUT
FGFROMUT
BRARMUT
PDGFRB.CNV.
PDGFRA.CNV
NFKBRCNY
FGFRO.CNV
AKTRCNV
MA®K4
A2
PD@FRB
N#1
FGBR3
FGBRI1

Fig: Important covariates related to the MEK inhibitors (left) or Ber-Abl
inhibitors (right) based on threshold for posterior marginal inclusion
probabilities (mPIP > 0.5).
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Results (G): Residual covariance structure between drugs

Estimator .

0.0 ‘
a ‘

Fig: Posterior mean of G (left) and resulting graph based on threshold for
marginal posterior edge inclusion probabilities (mEPIP) > 0.5 (right).
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BayesSUR summary

@ Development of “Structured Seemingly Unrelated Regression’
(SSUR-M) as one model in a class of flexible multivariate
linear models with variable and covariance selection.

@ A unified, efficient and user-friendly implementation of all
these models in the R package BayesSUR using Evolutionary
Stochastic Search (ESS).

@ Very flexible options for implementation of structure in
covariance matrix C and MRF prior for [

@ https://CRAN.R-project.org/package=BayesSUR

@ See Banterle et al (2018) and vignette ("BayesSUR") for
the model details.
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https://CRAN.R-project.org/package=BayesSUR
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Thank you!
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