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Outline

1 Inroduction: Integrative omics for personalized cancer therapy

2 Structured penalties for drug sensitivity prediction

3 Multivariate Bayesian variable selection for structured outcomes
and high-dimensional features
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Personalized cancer therapy

...aims to find the best therapy for each patient based on data
about the patient and tumor (e.g. genomic data).

slide by Stephan Pfister
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The PerCaThe project at the University of Oslo

> 25 key collaborators from many disciplines: math & stats,
medicine, biology, computer science, physics, ethics

Consortium lead:
A Frigessi, K Taskén, V Kristensen, Å Helland, A Köhn-Luque

in vitro screening in silico modeling ex vivo testing
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The PerCaThe project at the University of Oslo
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Predict sensitivity to multiple drugs Y from multi-omics X

Y = XB + ✏

Drug dose response
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Source: TCGA, 2013
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Predict sensitivity to multiple drugs Y from multi-omics X

Penalised regression and Bayesian hierarchical models

Use structured penalties (for B) or hyper-priors (for B or
selection indicator � to:

Borrow information between experiments

Use prior knowledge about similarity between Yi and Yk
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Typically available data (Menden et al. 2019, Figure 1⇤)

⇤DREAM AstraZeneca-Sanger Drug Combo Prediction Challenge
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Challenges and opportunities (1)

Small sample size

Several types of input data X :
E.g., gene expression, copy number, mutation
Multivariate response Y

Unclear how to define Y
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Challenges and opportunities (2)

The data are highly structured:

1 In Y : relationships between drugs, e.g. due to similar
chemical drug composition, same target genes/pathways

2 In X : relationships between molecular data sources

Ickstadt et al. (2018)
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Vertical integration: genes as the common biological units

Ickstadt et al., 2018
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Structured Penalized Regression for Drug Sensitivity Prediction

Zhi (George) Zhao, Manuela Zucknick (arXiv:1902.04996)
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Multi-response penalised linear regression

Objective function:

min
�0,B

⇢
1

2mn
kY � 1n�

T
0 � XBk

2
F + pen(B)

�

Standard penalised regression assigns the same penalty to all data
sources, and treats columns of Y as independent:

Lasso: pen(B) = �kBk`1

Elastic-net: pen(B) = �(↵kBk`1 +
1
2(1� ↵)kBk2`2)
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Integrative LASSO with Penalty Factors (Boulesteix et al. 2017)

Allow di↵erent penalties for di↵erent data sources

Extensions of IPF-lasso to multi-response regression and to
the elastic net

IPF-lasso: pen(B) =
X

s
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(Multi-response) Tree-guided group lasso (Kim & Xing 2012)

Include dependencies between columns of Y in a group lasso
Extension to IPF-tree lasso

Tree lasso: pen(B) = �
pX

j=1

X
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Simulation setup (similar to Boulesteix et al. 2017)

Two data sources (p1 > n, p2 > n).

Y = [X1, X̃2]


B1

B2

�
+ E.

Let the final X = [X1,X2] after dichotomizing X2 = 1{X̃2>0}.
Coe�cient matrix B:
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Some simulation results (m=24 drugs, m=100 samples)

Fig 5: Comparison of MSEval between di↵erent approaches (summary of 50
simulations runs). The three top panels are based on p1 = p2 = 150. The three
bottom panels are based on p1 = 500 and p2 = 150.
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Application to Genomics of Drug Sensitivity in Cancer data

(Garnett et al., 2012)

Large-scale pharmacogenomic study with n=498 cell lines and
m=97 drugs.

Outcome data: log(IC50) from dose-response experiments

Random draws of 80% cell lines as training data and 20% as
validation data.

Input data:
cancer type (p0 = 13)
! mandatory covariates not included in the penalty term,

mRNA expression (p1 = 2602),
copy numbers (p2 = 426) and
DNA mutations (p3 = 68)
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Results: Average performance across all drugs
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Results: MSEval of individual drugs

Fig 6: MSEval of individual drugs (average of 10 random training-test splits).
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Results: Some examples

Nutlin-3↵:
mechanism of action involves the p53-pathway, a↵ected in ca.
50% of cancers in most cancer types (R2

val = 0.45)

PD-0325901, RDEA119, CI-1040, AZD6244:

MEK1 inhibitors with highly correlated IC50 values.

Methotrexate:

general cytotoxic drug not targeted to specific
genes/pathways

Nilotinib:

inhibits the BCR-ABL fusion gene characteristic for chronic
myeloid leukemia. Related to Axitinib (smaller e↵ect).
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IPFStructPenalty summary

Combination of IPF-penalty (for multiple omics data sources)
and tree-lasso (for hierarchical correlation structure in drug
responses) to IPF-tree-lasso

Development of IPF-elastic net

Computational aspects: joint optimisation of > 2 penality
parameters is challenging.

We employ the Interval-search algorithm EPSGO (Frohlich &
Zell 2005; Sill et al. 2014): learning a Gaussian process model
of loss function surface from visited points

https://github.com/zhizuio/IPFStructPenalty

Advantage: simple implementation, computational speed

Disadvantage: limited options for manipulation of penalty
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Multivariate Bayesian variable selection for structured

outcomes and high-dimensional features:

Structured seemingly unrelated regression with MRF priors

Zhi Zhao, Marco Banterle, Alex Lewin, Manuela Zucknick
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BayesSUR (https://CRAN.R-project.org/package=BayesSUR)

Bayesian seemingly unrelated regression for variable and
covariance selection (Banterle et al., 2018)

Matrix formulation of the model:

Y = XB +U,

vec(U) ⇠ N (0, C ⌦ In)
Y n⇥m matrix of outcomes with m⇥m covariance matrix C ,
X n ⇥ p matrix of predictors for all outcomes,
B p ⇥m matrix of regression coe�cients.

Introduce sparsity:

�kj |�kj ,w ⇠ �kjN (0, w) + (1� �kj)�0(�kj)

Binary latent indicator matrix � = {�jk} for variable selection
Spike-and-slab prior on vectorised � = vec(B) and � = vec(�)
and w ⇠ IG(aw , bw ) and �0(·) is the Dirac delta function.
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BayesSUR (2)

We can introduce structure/ sparsity in two places:

1 Prior for covariance matrix: C ⇠ HIWG with further
hyper-prior on graph G (Banterle et al. 2018)

Graph G encodes conditional dependence between responses.
Sparse G implies sparse precision matrix C�1.
Sparse Seemingly Unrelated Regression (SSUR)

2 Prior for variable selection indicator �.
Sparsity: which covariates are associated with which responses.
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BayesSUR (3)

Options for covariance matrix structure (Banterle et al. 2018)

diagonal: Hierarchical Related Regression (Richardson et al 2011)

dense: dense Seemingly Unrelated Regressions (dSUR)
sparse: Sparse Seemingly Unrelated Regressions (SSUR)

Options for variable selection (j = 1, · · · , p, k = 1, · · · ,m)
Independent Bernoulli prior:

�jk |!jk ⇠ Ber(!j), with !j ⇠ Beta(a!, b!).

Hotspot prior:

�jk |!jk ⇠ Ber(!jk), with !jk = ok ⇥ ⇡j ,

ok ⇠ Beta(ao , bo),⇡j ⇠ Gamma(a⇡, b⇡).

Markov Random Field (MRF) prior:

f (�|d , e,G ) / exp{d1>� + e · �>G�}
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MRF prior for pharmacogenomics

f (�|d , e,G ) / exp{d1>� + e · �>G�}

d controls the model sparsity,

e the strength of relations between responses and predictors,

G is an adjacency matrix of the structure prior knowledge.
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Application to Genomics of Drug Sensitivity in Cancer data

Same data as before, but now only use m = 7 cancer drugs

Use MRF prior to include structure, with edges between:

drugs: Group1 (”RDEA119”,”PD-0325901”,”CI-1040” and
”AZD6244”); Group2 (”Nilotinib”,”Axitinib”)
genes in MAPK/ERK pathway (target of Group1)
genes in the Bcr-Abl fusion gene (target of Group2)
genes of MAPK/ERK pathway and Group1
genes of the Bcr-Abl fusion gene and Group2
each gene feature in di↵erent data sources (GEX, CNV, MUT)
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Application to Genomics of Drug Sensitivity in Cancer data
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Results (�): Which covariates are important?

Fig: Important covariates related to the MEK inhibitors (left) or Bcr-Abl
inhibitors (right) based on threshold for posterior marginal inclusion
probabilities (mPIP > 0.5).
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Results (G): Residual covariance structure between drugs

Fig: Posterior mean of G (left) and resulting graph based on threshold for
marginal posterior edge inclusion probabilities (mEPIP) > 0.5 (right).
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BayesSUR summary

Development of “Structured Seemingly Unrelated Regression”
(SSUR-M) as one model in a class of flexible multivariate
linear models with variable and covariance selection.

A unified, e�cient and user-friendly implementation of all
these models in the R package BayesSUR using Evolutionary
Stochastic Search (ESS).

Very flexible options for implementation of structure in
covariance matrix C and MRF prior for �

https://CRAN.R-project.org/package=BayesSUR

See Banterle et al (2018) and vignette("BayesSUR") for
the model details.
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Thank you!
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