Targeted Learning Mark van der Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap fo Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning

Targeted Learning

The bridge from machine learning to statistical and causal inference

Mark van der Laan

Jiann-Ping Hsu/Karl E. Peace Professor in Biostatistics & Statistics University of California, Berkeley

4 March 2020 Alan Turing Institute

Acknowledgements: Rachael Phillips, Ivana Malenica, Chris Kennedy, Aurelien Bibaut, Nima Hejazi and Jonathan Levi

Traditional toolbox for statistics

Targeted Learning

Mark van der Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap fo Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning

	Type of Data				
Boal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time	
Describe one group	Mean. SD	Median, interquartile range	Proportion	Kaplan Meier survival curve	
Compare one group to a hypothetical value	One-sample itest	Wilcoxoritest	Chi-square or Binomial test **		
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Montel-Haenszol*	
Compare two paired groups	Paired 7 test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression*	
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cex proportional hazard regression**	
Compare three or more matched groups	Repeated- measures ANOVA	Friedmantest	Cochrane ()**	Conditional proportional hazards regression**	
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**		
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*	
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*	

Performance of traditional tools

∢ 🗗 >

Performance of traditional tools

Targeted

Post-hoc model manipulation

Why care about statistical inference?

Targeted Learning

Mark van der Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap fo Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning

Why Most Published Research Findings Are False

John P. A. Ioannidis

False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant

Joseph P. Simmons¹, Leif D. Nelson², and Uri Simonsohn¹ 'The Wilarton School, University of Pennsylvania, and ²Haas School of Business, University of California, Berkeley

The Statistical Crisis in Science

Data-dependent analysis—a "garden of forking paths"— explains why many statistically significant comparisons don't hold up.

Andrew Gelman and Eric Loken

Targeted Learning for answering statistical and causal questions with confidence intervals

Targeted Learning is a subfield of statistics

Targeted Learning Mark van der Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap fo Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning

van der Laan & Rose, Targeted Learning: Causal Inference for Observational and Experimental Data. New York: Springer, 2011.

van der Laan & Rose, Targeted Learning in Data Science: Causal Inference for Complex Longitudinal Studies. New York: Springer, 2018.

The Hitchhiker's Guide to the tlverse

Real-world applications of Targeted Learning

Targeted Learning Mark van der

Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap fo Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning The NEW ENGLAND JOURNAL of MEDICIN

ORIGINAL ARTICLE

HIV Testing and Treatment with the Use of a Community Health Approach in Rural Africa

D.Y. Havir, L.B. Balzer, E.D. Charlebois, T.D. Clark, D. Kwarisima, J. Ayeko, J. Kabami, N.Samp, T. Liegler, G. Chamiro, Y.J. Jan, K. Kadee, M. Atukunda, T. Ruel, S.B. Shade, E. Ssemmondo, D.M. Byonanelye, F. Managuo, A. Joaraganise, W. Olio, D. Black, K. Smana, R. Burger, M. Getahum, J. Achando, B. Awoonda, H. Nakato, J. Kinonle, S. Okivor, H. Thimumurthy, C. Kosa, J. Brown, C. Manzea, J. Schwal, G. Lavay, A. Fleny, E. Mugoraw Wafula, P. Omanga, Y.-H. Chen, J.F. Rooney, M. Bason, M. van der Laue, C.R. Cohen, E. Blauku, M.R. Kama, and M. Petersen

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine

D.E. Neafsey, M. Juraska, T. Bedford, D. Benkeser, C. Valim, A. Griggs, M. Lievens, S. Abdulla, S. Adjei, T. Agbenyega, S.T. Agnandji, P. Aide, S. Anderson, D. Ansong, J.J. Aponte, K.P. Asante, P. Bejon, A.J. Birkett, M. Bruls, K.M. Connolly, U. D'Alessandro. C. Dobaño. S. Gesase, B. Greenwood. I. Grimsby, H. Tinto.

O. D. Messandro, C. Dobano, S. Gesase, D. Greenwood, J. Grimsoy, H. Titto, M.J. Hamel, I. Hoffman, P. Kamthunzi, S. Kariuki, P.G. Kremsner, A. Leach, B. Lell, N.J. Lennon, J. Lusingu, K. Marsh, F. Martinson, J.T. Molel, E.L. Moss, P. Njuguna,

C.F. Ockenhouse, B. Ragama Ogutu, W. Otieno, L. Otieno, K. Otieno, S. Owusu-Agyei, D.J. Park, K. Pellé, D. Robbins, C. Russ, E.M. Ryan, J. Sacarlal, B. Sogoloff, H. Sorgho, M. Tanner, T. Theander, I. Valea, S.K. Volkman, Q. Yu, D. Lapierre, B.W. Birren, P.B. Gilbert, and D.F. Wirth © Health Research and Educational Trust DOI: 10.1111/1475-6773.12848 METHODS ARTICLE

Robust Machine Learning Variable Importance Analyses of Medical Conditions for Health Care Spending

Sherri Rose 🗈

THE LANCET Respiratory Medicine Volume 3, issue 1, January 2015, Pages 42-52

Articles

Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study

Better clinical decisions from observational data

Targeted Learning Mark van der

Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap fo Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning

Statistics in Medicine

In Medicine Research Article
Received 24 May 2013, Accepted 5 January 2014 Published online 17 February 2014 in Wiley Online Library
(vile-conlinelibrary.com) DOI: 10.1002/sine.6099

Targeted learning in real-world comparative effectiveness research with time-varying interventions

Romain Neugebauer, $^{a\ast \dagger}$ Julie A. Schmittdiel^a and Mark J. van der Laan^b

Standard methods: No benefit to more aggressive intensification strategy

Targeted Learning: More aggressive intensification protocols result in better outcomes

The roadmap for statistical learning

Targeted Learning	STEP 1-
Mark van der Laan	DESCRIBE EXPERIMENT
Human Art in Statistics Role of Targeted Learning in	STEP 2: SPECIFY STATISTICAL MODEL
Roadmap for Targeted Learning	STEP 3: DEFINE STATISTICAL QUERY
Theoretical Underpinnings Adaptive Experimental Designs	STEP 4: CONSTRUCT ESTIMATOR
Online Learning Future of Targeted	STEP 5: OBTAIN INFERENCE

What is the experiment that generated the data?

Three multi-national RCTs assessing impact of corticosteroids on mortality among septic shock patients

What is the experiment that generated the data?

What is the experiment that generated the data?

What is known about stochastic relations for the observed variables?

What is the target estimand that we want to learn from the data?

What is the average difference in mortality between treatment groups when adjusting for covariates?

 $\Psi(P_0) = E_0(E_0[Y|A=1,W] - E_0[Y|A=0,W])$

How should we estimate the target estimand?

TARGETED MAXIMUM LIKELIHOOD ESTIMATION

Initial estimation of $E_0[Y|A, W]$ with super (machine) learning

Updating initial estimate to acheive optimal bias-variance trade-off for $\Psi(P_0)$

TMLE estimates are optimal:

plug-in, efficient, unbiased, finite sample robust

How should we approximate the sampling distribution of our estimator?

Effect of targeting on sampling distribution

Targeted Learning Mark van der Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap for Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning

What is the optimal rule for assigning corticosteroids to patients in septic shock?

Super learner

Online Learning

Future of Targeted Learning Oracle inequality tells us cross-validation is optimal for selection among estimators

Super learner performance in practice

Highly Adaptive Lasso (HAL)

Targeted Learning Mark van der Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap fo Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning

Key Idea

- Any *d*-dimensional cadlag function (i.e. right-continuous) can be represented as a possibly infinite linear combination of spline basis functions.
- The variation norm / complexity of a function is the L₁-norm of the vector of coefficients.

Converges to true function at rate $n^{-1/3}(\log n)^{d/2}$

HAL performance for d=3

HAL metalearner

TMLE follows a path of maximal change in target estimand per unit of information/likelihood

Targeted Learning
Mark van der Laan
Human Art in
Statistics
Role of Targeted
Data Science
Roadmap for Targeted
Learning
Theoretical Underpinnings
Adaptive Experimental
Designs
Online Learning
Future of Targeted
Learning

Can we break HAL-TMLE?

Robust inference for adaptive sequential RCTs

Balanced vs. adaptive sequential design

Targeted
Learning Mark van der
Laan
Human Art in Statistics
Role of Targeted Learning in Data Science
Roadmap for Targeted Learning
Theoretical Underpinnings
Adaptive Experimental Designs
Online Learning
Future of Targeted Learning

Balanced vs. adaptive sequential design

Targeted
Learning Mark van der
Laan
Human Art in Statistics
Role of Targeted Learning in Data Science
Roadmap for Targeted Learning
Theoretical Underpinnings
Adaptive Experimental Designs
Online Learning
Future of Targeted Learning

Online super learning in the ICU

Targeted Learning Mark van der Laan

Human Art in Statistics

Role of Targeted Learning in Data Science

Roadmap fo Targeted Learning

Theoretical Underpinnings

Adaptive Experimenta Designs

Online Learning

Future of Targeted Learning

Adaptive algorithm

- Regularly updated with batches of new data
- Learns from both
 - within individual time series, and
 - across patients
- Uncertainty of forecasts assessed with prediction intervals

15-minute ahead forecasts with prediction intervals for patient with hypotensive episodes

Targeted Learning
Mark van der Laan
Human Art in
Statistics
Role of Targeted
Learning in Data Science
Roadmap for
Learning
Theoretical Underpinnings
Adaptive
Experimental Designs
Online Learning
Future of
Targeted Learning

Future of Targeted Learning

