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The last 25 years have seen a large increase in the contribution 
that health economic analysis has made in national and 
international decisions about health care provision. Andy Briggs 
has been working at the interface between medical statistics and 
health economics throughout this period. In this talk he gives a 
personal history of that journey with an emphasis on how 
statistical thinking has improved the methods of health 
economic evaluation over that period. Looking to the future, 
there remains much potential for statistical methods to continue 
to improve the way in which we evaluate the cost-effectiveness 
of health care interventions and to improve health care decision 
making as a result.
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Statistical methods for cost-effectiveness 
analysis: a personal history

• Representing uncertainty in cost-effectiveness analysis
• Clinical trials versus decision models: a false dichotomy?
• Statistical decision theory
• Survival analysis
• Comparative effectiveness and the rise of Network Meta Analysis
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Representing uncertainty in CEA
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Real World
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statistic of interest

Bootstrap World

empirical
distribution

F

bootstrap
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S(x )
statistic of interest

* ***

*

Two worlds: the real world and the bootstrap world
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Bootstrapping the ICER
Four stage process:
1. Bootstrap nC cost/effect pairs from the control 

group: calculate means
2. Bootstrap nT cost/effect pairs from the 

treatment group: calculate means
3. Calculate the bootstrapped ICER from these 

bootstrapped means
4. Repeat many times to create the bootstrap 

estimate of the ICER sampling distribution
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Trials versus models: false dichotomy?

19

Whither ‘trial-based’ analyses?

• Failure to compare all relevant options
• Truncated time horizon
• Lack of relevance to the decision context
• Failure to incorporate all evidence
• Inadequate quantification of uncertainty

Source: Sculpher et al, 2006, Health Economics
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Requirements of economic evaluation for 
decision making
• Clear statement and measurement of the objective function
• Consistent perspective
• Appropriate specification of the decision problem
• Appropriate time horizon
• All relevant evidence
• Relevant to the decision context
• Appropriate characterisation of uncertainty

Source: Sculpher et al, 2006, Health Economics
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An iterative approach to economic appraisal

Source: Sculpher et al, 2006, Health Economics
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UKPDS Outcomes Model v1

• Series of linked risk equations from UKPDS study
• Capable of predicting (quality adjusted) life 

expectancy and lifetime cost

23

UKPDS Outcomes 
Model v1
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Statistical decision theory

25
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Expected Net Benefit of Sampling (ENBS) 

• Is it cost-effective to run a new study?  If so, to choose the best design 
(e.g. sample size per arm).

• Difference between monetarised gain from collecting further data 
from chosen study design, and the cost of that study

• ENBS (n) = population EVSI (n) – cost (n)

28
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as a result of randomizing some patients to treatments
that are suboptimal—particularly to placebo [15].

In fact, these calculations can be used to determine
exactly which treatments should be included in the trial,
on the basis of existing evidence. EVI calculations may
show that randomizing to a placebo arm is not justified
by the additional information gained. Figure 4 illustrates
a network of evidence on bipolar disorder treatments,
involving five active treatments and placebo. Using
a simple CEA model, similar to the model used in NICE
Technology Assessment 66 [19], we have experimented
on various forms of EVSI calculation. Figure 5 shows a
plot of the EVSI against the monetarized value of a
QALY (willingness-to-pay), when 1500 patients are allo-
cated in equal numbers to each arm. Each line represents
a trial that includes different treatment comparisons. The
results show that an infinitely sized trial including all seven

treatments provides scarcely any more information than a
trial of 1500 patients involving the four best treatments:
olanzipine, haloperidol, lithium and valproate semisodium.
Note that in this context, best means highest in expected
net benefit. Placebo does not appear in this list as it is
relatively ineffective, quetiapine because it is relatively
costly. This approach could be used to determine whether
there is value in funding multi-arm trials of biologic thera-
pies, and if so which arms to include.

Some readers may be interested in seeing the formulae
for the different forms of EVI calculation. These can
be found in the appendix (available as supplementary
data at Rheumatology Online), where they are set out in
a heavily annotated form.

CEA models and VOI calculations

Clearly, VOI calculations begin with a CEA model. It needs
to be a CEA model of the specific type—becoming
increasing widely used—that fully expresses parameter
uncertainty. Models that do not require individual patient
simulation are favoured, because the high computational
demands of EVPPI and EVSI calculations are then
increased exponentially by a third level of simulation, as
well as a level of optimization to identify the optimal sam-
ple size. While it is true that methods exist that mitigate
this problem, they require special skills and software.

Although solutions to computing problems can usually
be found, it needs to be emphasized that VOI calculations,
like many other techniques, require careful interpretation
and sensitivity analysis [12]. It may require a large number
of calculations looking at different scenarios, and possible
alternative portfolios of research before a trial design can
be confidently generated.

The prime requirement, however, is a CEA model that
represents a consensus view of the natural history of the
disease and the evidence. Clinicians commonly express
serious doubts about the assumptions that are made just
to achieve a CEA, and are often dismayed that, after

FIG. 3. Population EVSI, trial costs and ENBS for the breast cancer screening example. Adapted from Ref. [12].
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FIG. 4 The network of evidence considered by NICE in its
evaluation of new drugs for bipolar disorder. Adapted
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Are head-to-head trials of biologics needed?

 at Periodicals D
ept on January 2, 2014

http://rheum
atology.oxfordjournals.org/

D
ow

nloaded from
 

Welton et al.  Rheumatology 2011;50:iv19-iv25

29

Survival analysis
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Parametric survival - distribution selection

Coiffier (2012); Mak (2013)

31

Parametric PFS vs Kaplan-Meier - distribution selection (4)

• Latimer (2011) recommends selecting the most appropriate parametric model based on both within-
trial fit, and external and clinical validity

Method Description

Within trial period
AIC & BIC statistics Assess the relative fit of parametric models whilst accounting for the number of parameters
Cox-Snell residuals Assess how closely a parametric function follows the Kaplan-Meier function
Cumulative hazard plot Assess the behavior of the hazard function over time and the plausibility of the proportional hazards assumption

Log-cumulative hazard plot Assess the behavior of the hazard function over time and the plausibility of the proportional hazards assumption

Quantile-quantile (Q-Q) plot Assess how closely an accelerated-failure time treatment effect model fits the data

Visual inspection
Assess how closely a parametric function follows the Kaplan-Meier function and the clinical plausibility of the prediction 
in relation to other endpoints

Extrapolation period
Monthly event probabilities Compare event probabilities based on each parametric function and external longer term observational data

Visual inspection
Assess how closely the tail of a parametric function fitted to the active treatment arm(s) concur with external longer 
term observational Kaplan-Meier data

32
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Cure modelling

• For some outcomes, a proportion of patients may never experience the event.
• e.g. patients who are cured of their disease may never experience disease 

recurrence
• Identified graphically by a plateau in the Kaplan-Meier where the hazard 

equates to the general population hazard
• Standard parametric models may be incapable of fitting to these hazard 

functions
• May also be an interest in estimating the proportion of patient who are cured, 

referred to as the “cure fraction” 

33

Parametric cure models
• Mixture cure models assume that a proportion of patients are cured and the excess 

(disease) hazard function tends to zero at the cure fraction. 

𝑆 𝑡 = 𝑆∗ 𝑡 𝜋+ (1−𝜋)𝑆(𝑡+)
• 𝑡 is time
• 𝑆∗ 𝑡 is the survival for the general population
• 𝜋 is the cure fraction
• 𝑆(𝑡+) is the survivor function for uncured patients 

• Need to choose a parametric form for 𝑆(𝑡+)
• Weibull, Lognormal, Generalised gamma

• Available using the strsmix command in Stata and other packages (SAS, R)

Lambert (2007)

34



2/10/20

18

Parametric cure models – application
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Treatment switching

• Patients switch from control to treatment arm following primary endpoint
• Common issue in oncology trials 

• As a subset of patients in the control arm receive the benefit of treatment, 
overall survival times for patients who switched treatment are overestimated.

• Failure to adjust for treatment crossover can result in an underestimated relative 
treatment effect.

• Adjustment for treatment crossover aims to reduce bias in relative treatment 
effect estimates resulting from such treatment switching.

• Methods that preserve randomisation are needed to provide  unbiased 
treatment effect estimates in the presence of treatment switching
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Methods for adjusting for treatment crossover

• NICE guidelines provide a range of approaches to consider when faced with 
treatment switching, including:

• Rank Preserving Structural Failure Time Models (RPSFTM)
• Iterative parameter estimation (IPE) algorithm
• Inverse Probability of Censoring Weights (IPCW) method
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Comparative effectiveness
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Network Meta-Analysis
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Comparative effectiveness without a 
network?
Comparing existing but unconnected data:
• Naïve comparison
• Match adjusted indirect comparisons (MAIC)
• Simulated Trial Comparison (STC)

Single arm studies:
• Historical controls
• Synthetic controls
• Self control
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Statistical methods for cost-effectiveness 
analysis: looking to the future

• Real world data, big data and personalised medicine
• Application of ML and AI
• Use of innovative methods for causal inference (MR / other IV approaches)
• SEM (modelling components of CEA?)

• Refinement of existing methods
• Methods for statistical estimation of counterfactuals
• Application of existing VOI methods (under-used)
• Novel survival analysis approaches (multi-state survival / competing risks)
• Uncertainty in the face of multiple methods challenges (bootstrapping)
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