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The last 25 years have seen a large increase in the contribution
that health economic analysis has made in national and
international decisions about health care provision. Andy Briggs
has been working at the interface between medical statistics and
health economics throughout this period. In this talk he gives a
personal history of that journey with an emphasis on how
statistical thinking has improved the methods of health
economic evaluation over that period. Looking to the future,
there remains much potential for statistical methods to continue
to improve the way in which we evaluate the cost-effectiveness
of health care interventions and to improve health care decision
making as a result.
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Statistical methods for cost-effectiveness
analysis: a personal history

* Representing uncertainty in cost-effectiveness analysis

* Clinical trials versus decision models: a false dichotomy?

* Statistical decision theory

* Survival analysis

* Comparative effectiveness and the rise of Network Meta Analysis

Representing uncertainty in CEA
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Two worlds: the real world and the bootstrap world

Real World Bootstrap World

unknown observed
probability random
distribution sample

Fee X =

X1,X2...Xp)

empirical
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Bootstrapping the ICER

Four stage process:

1. Bootstrap n. cost/effect pairs from the control
group: calculate means

2. Bootstrap n; cost/effect pairs from the
treatment group: calculate means

3. Calculate the bootstrapped ICER from these
bootstrapped means

4. Repeat many times to create the bootstrap
estimate of the ICER sampling distribution

10
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Cls onghg CE plane: the bootstrap interval
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A parametric approach: Fieller’s theorem
AC-RAE ~ Normally
_ Aé—}EAE - No
Jvar(AC)+R? var(AE)-2R cov(AC,AE)
R*[AE® -2, var(AE) | uR?
—ZR[AE ‘AC -2z, COV(AE,AC)] Standard quadratic +bR
+[AC2 3 Zi/z Var(AC):I equationin R +c
=0
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AE® -z, var(AE)
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Non-significant differences?
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The estimated distribution of the ICER
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Problems with negative with negative ratios

Incremental costs
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Uncertainty on the CE plane: using the decision rule
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Cost-effectiveness acceptability curves

Probability cost-effective

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0

The curve is tending to 1 minus the P-value
(one-sided) for the effect difference (P=0.05)

The 50% point corresponds to the point

estimate of cost-effectiveness (£15,000/LY)
The curve cuts the vertical axis at the P-value
(one sided) for the cost difference (P=0.07)

£0 £20,000 £40,000 £60,000 £80,000 £100,000
Value of ceiling ratio

17
Cost-effectiveness acceptability curves
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Trials versus models: false dichotomy?

19

Whither ‘trial-based’ analyses?

* Failure to compare all relevant options

* Truncated time horizon

* Lack of relevance to the decision context
* Failure to incorporate all evidence

* Inadequate quantification of uncertainty

Source: Sculpher et al, 2006, Health Economics

20
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Requirements of economic evaluation for
decision making

* Clear statement and measurement of the objective function
* Consistent perspective

* Appropriate specification of the decision problem

* Appropriate time horizon

* All relevant evidence

* Relevant to the decision context

* Appropriate characterisation of uncertainty

Source: Sculpher et al, 2006, Health Economics

21
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Identify decision Synthesis and Setting of Primary research Synthesis and
problems ™| modelling given ™ research ["] (e.g. RCTs) ™ modelling with >
available evidence priorities updated evidence
Preferred funding basis for economic evaluation N
Trial-based CEA /
measurement
Trial with synthesis and modelling _
Source: Sculpher et al, 2006, Health Economics
22
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UKPDS Outcomes Model v1

» Series of linked risk equations from UKPDS study

» Capable of predicting (quality adjusted) life
expectancy and lifetime cost

Diabetologia (2004) 47:1747-1759

(] L]
DOI 10.1007/s00125-004-1527-2 Dlabet0|09|a

A model to estimate the lifetime health outcomes
of patients with Type 2 diabetes: the United Kingdom Prospective
Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68)

P. M. Clarke!-4- A. M. Gray! - A. Briggs! - A. J. Farmer2 - P. Fenn3 - R. J. Stevens4 - D. R. Matthews>
I. M. Stratton* - R. R. Holman* - on behalf of the UK Prospective Diabetes Study (UKPDS) Group
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Statistical decision theory

25
Introduction to Statistical Decision
Theory
By John Pratt, Howard Raiffa and Robert Schlaifer
KStatistical
Decision
Theory
26
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Health Econ. 1996 Nov-Dec;5(6):513-24.

An economic approach to clinical trial design and research priority-setting.
Claxton K', Posnett J.

+ Author information

Abstract

Whilst significant advances have been made in persuading clinical researchers of the value of conducting economic evaluation alongside
clinical trials, a number of problems remain. The most fundamental is the fact that economic principles are almost entirely ignored in the
traditional approach to trial design. For example, in the selection of an optimal sample size no consideration is given to the marginal costs or
benefits of sample information. In the traditional approach this can lead to either unbounded or arbitrary sample sizes. This paper presents a
decision-analytic approach to trial design which takes explicit account of the costs of sampling, the benefits of sample information and the
decision rules of cost-effectiveness analysis. It also provides a consistent framework for setting priorities in research funding and establishes
a set of screens (or hurdles) to evaluate the potential cost-effectiveness of research proposals. The framework permits research priority
setting based explicitly on the budget constraint faced by clinical practitioners and on the information available prior to prospective research.
It demonstrates the link between the value of clinical research and the budgetary restrictions on service provision, and it provides practical
tools to establish the optimal allocation of resources between areas of clinical research or between service provision and research.

PMID: 9003938 DOI: 10.1002/(SICI)1099-1050(199611)5:6<513::AID-HEC237>3.0.CO;2-9
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Expected Net Benefit of Sampling (ENBS)

* |s it cost-effective to run a new study? If so, to choose the best design
(e.g. sample size per arm).

* Difference between monetarised gain from collecting further data
from chosen study design, and the cost of that study

* ENBS (n) = population EVSI (n) — cost (n)

28
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Fic. 3. Population EVSI, trial costs and ENBS for the breast cancer screening example. Adapted from Ref. [12].

£4000000 7
Pop EVSI

£3500000

£3000000 ‘/’w;;al costs ————

£2500000 / /.

£2000000

£1500000 / M

£1000000 7 —
£500000 «.4/./

£- T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Number on each arm

—

Welton et al. Rheumatology 2011,50:iv19-iv25

29

Survival analysis

30
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Parametric survival - distribution selection
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Parametric PFS vs Kaplan-Meier - distribution selection (4)

« Latimer (2011) recommends selecting the most appropriate parametric model based on both within-
trial fit, and external and clinical validity

Method — Joessipin
Within trial period

AIC & BIC statistics Assess the relative fit of parametric models whilst accounting for the number of parameters
Cox-Snell residuals Assess how closely a parametric function follows the Kaplan-Meier function
Cumulative hazard plot Assess the behavior of the hazard function over time and the plausibility of the proportional hazards assumption
Log-cumulative hazard plot  Assess the behavior of the hazard function over time and the plausibility of the proportional hazards assumption
Quantile-quantile (Q-Q) plot Assess how closely an accelerated-failure time treatment effect model fits the data

Assess how closely a parametric function follows the Kaplan-Meier function and the clinical plausibility of the prediction

Visual inspection X . X
in relation to other endpoints

Extrapolation period
Monthly event probabilities Compare event probabilities based on each parametric function and external longer term observational data
Assess how closely the tail of a parametric function fitted to the active treatment arm(s) concur with external longer

Visual inspection § i
term observational Kaplan-Meier data

32
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Cure modelling

* e.g. patients who are cured of their disease may never experience disease
recurrence

- Identified graphically by a plateau in the Kaplan-Meier where the hazard
equates to the general population hazard

- Standard parametric models may be incapable of fitting to these hazard
functions

- May also be an interest in estimating the proportion of patient who are cured,
referred to as the “cure fraction”

- For some outcomes, a proportion of patients may never experience the event.

33

Parametric cure models

- Mixture cure models assume that a proportion of patients are cured and the excess
(disease) hazard function tends to zero at the cure fraction.

S@) =S"®[r+ A -m)St)]
tistime
S*(t) is the survival for the general population
1 is the cure fraction
S(t,) is the survivor function for uncured patients
- Need to choose a parametric form for S(t,,)
* Weibull, Lognormal, Generalised gamma

- Available using the st rsmix command in Stata and other packages (SAS, R)

Lambert (2007)

34
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Parametric cure models — application
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Treatment switching

- Patients switch from control to treatment arm following primary endpoint

* Common issue in oncology trials

+ As a subset of patients in the control arm receive the benefit of treatment,
overall survival times for patients who switched treatment are overestimated.

* Failure to adjust for treatment crossover can result in an underestimated relative
treatment effect.

* Adjustment for treatment crossover aims to reduce bias in relative treatment
effect estimates resulting from such treatment switching.

* Methods that preserve randomisation are needed to provide unbiased
treatment effect estimates in the presence of treatment switching

36
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Methods for adjusting for treatment crossover

+ NICE guidelines provide a range of approaches to consider when faced with
treatment switching, including:
* Rank Preserving Structural Failure Time Models (RPSFTM)
* Iterative parameter estimation (IPE) algorithm
* Inverse Probability of Censoring Weights (IPCW) method

37

Comparative effectiveness

38
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Network Meta-Analysis
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Comparative effectiveness without a
network?

Comparing existing but unconnected data:

* Naive comparison

* Match adjusted indirect comparisons (MAIC)
* Simulated Trial Comparison (STC)

Single arm studies:
* Historical controls
* Synthetic controls
* Self control

42
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Statistical methods for cost-effectiveness
analysis: looking to the future

* Real world data, big data and personalised medicine
* Application of ML and Al
* Use of innovative methods for causal inference (MR / other IV approaches)
* SEM (modelling components of CEA?)

* Refinement of existing methods
* Methods for statistical estimation of counterfactuals
* Application of existing VOI methods (under-used)
* Novel survival analysis approaches (multi-state survival / competing risks)
* Uncertainty in the face of multiple methods challenges (bootstrapping)

43
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