London School of Hygiene & Tropical Medicine

Improving Health Worldwide

Satellite-based machine learning models to estimate high-resolution environmental exposures across the UK

Rochelle Schneider

Research Fellow in Geospatial Data Science PhD Geospatial Analytics | MSc GIS | MRes Remote Sensing

Visiting Researcher at ECMWF Centre on Climate Change and Planetary Health, LSHTM

Antonio Gasparrini

Professor of Biostatistics and Epidemiology PhD Medical Statistics | Postgraduate Medical Statistics and Biometry | MSc Biostatistics

Centre for Statistical Methodology, LSHTM Centre on Climate Change and Planetary Health, LSHTM

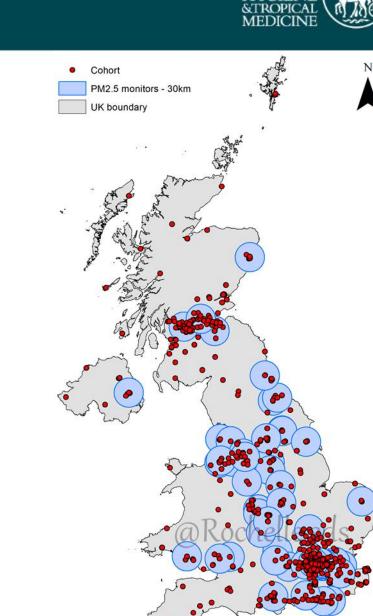
Current issues in environmental epidemiology

Specific aspects:

- Widespread exposure to environmental factors e.g. air pollution often affecting the whole population;
- Often small risks *e.g.*, a RR of 1.0051 (95%CI: 1.0007-1.0093) for an increase of 10µgr/m³ of PM₁₀ (Samet NEJM 2000);
- Need to perform epidemiological analyses on large populations.

Traditional Limitations

- Outcomes/exposures with low temporal and/or spatial resolution, roughly aggregated, and lack of individual / small-area information;
- Partial coverage, especially in rural areas and in low/middle income countries, posing limitations in country-wide or global analyses.
- Linkage between various temporal and spatial scales

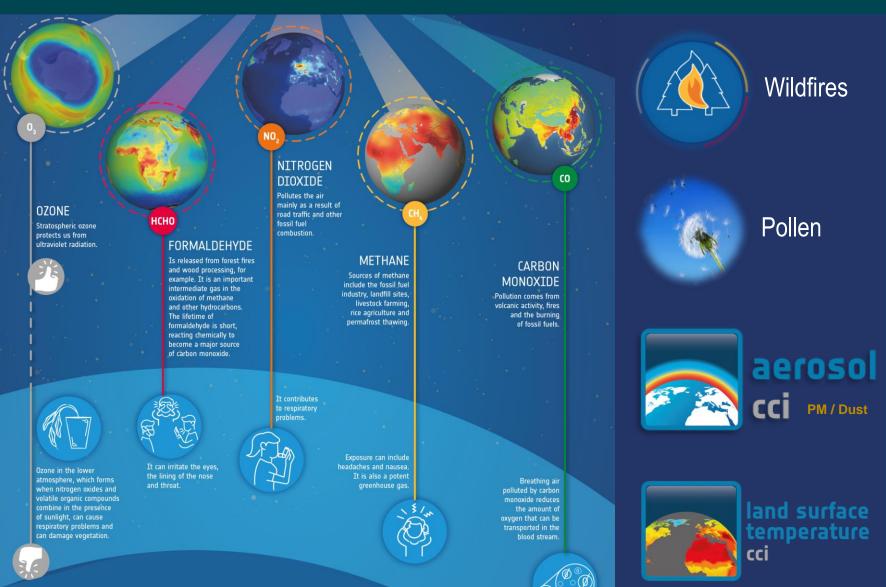


Novel data sources for environmental epidemiological studies

→ THE AIR WE BREATHE

Air pollution is a major environmental health problem that affects millions of people around the world. Satellite data and computer models can show how pollution accumulates and how it is carried in the air. Mapping the global atmosphere every day, Sentinel-5P provides high-resolution data on a multitude of trace gases and information on aerosols that affect air quality and the climate. Offering advances in coverage and resolution, Sentinel-5P is set to take air-quality monitoring to a new level.

> Sentinel-5P carries **TROPOMI*** ne most advanced multispectral imaging spectrometer to date



Project ST- UK

(Spatio-temporal UK exposure modelling)

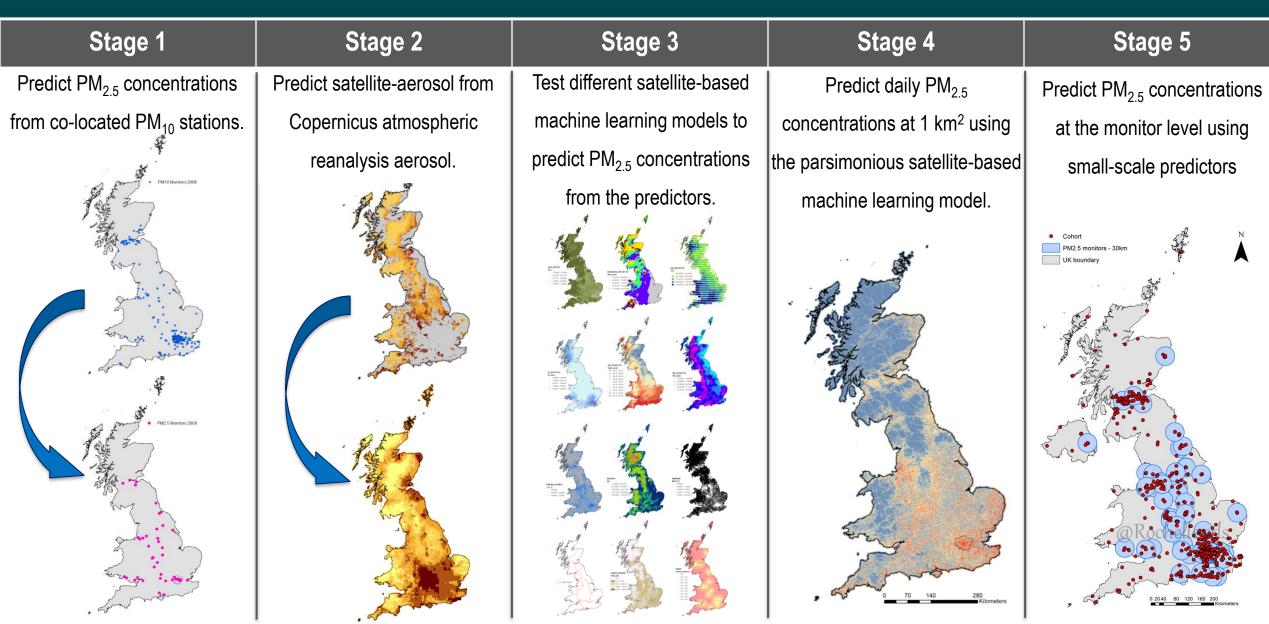
Estimation of daily PM_{10} and $PM_{2.5}$ concentrations using satellite-based machine learning models

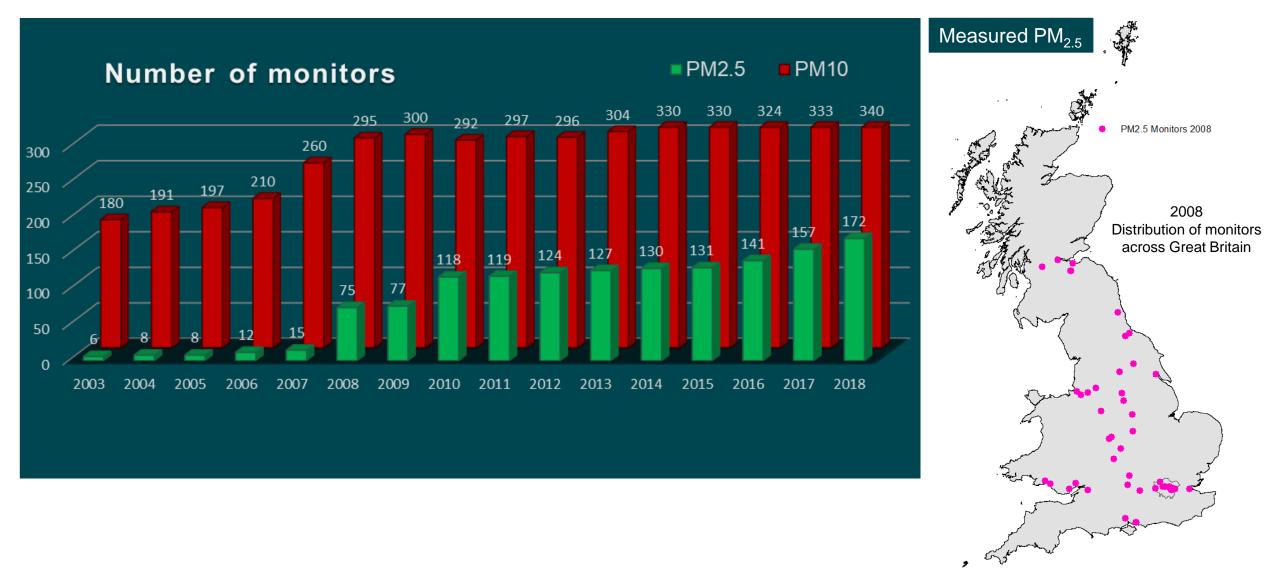
CASE STUDY

Case Study: **Great Britain** Time series: 2003-2018 Temporal resolution: daily 1 x 1km² Spatial resolution: Variable estimated: $PM_{10} + PM_{2.5}$

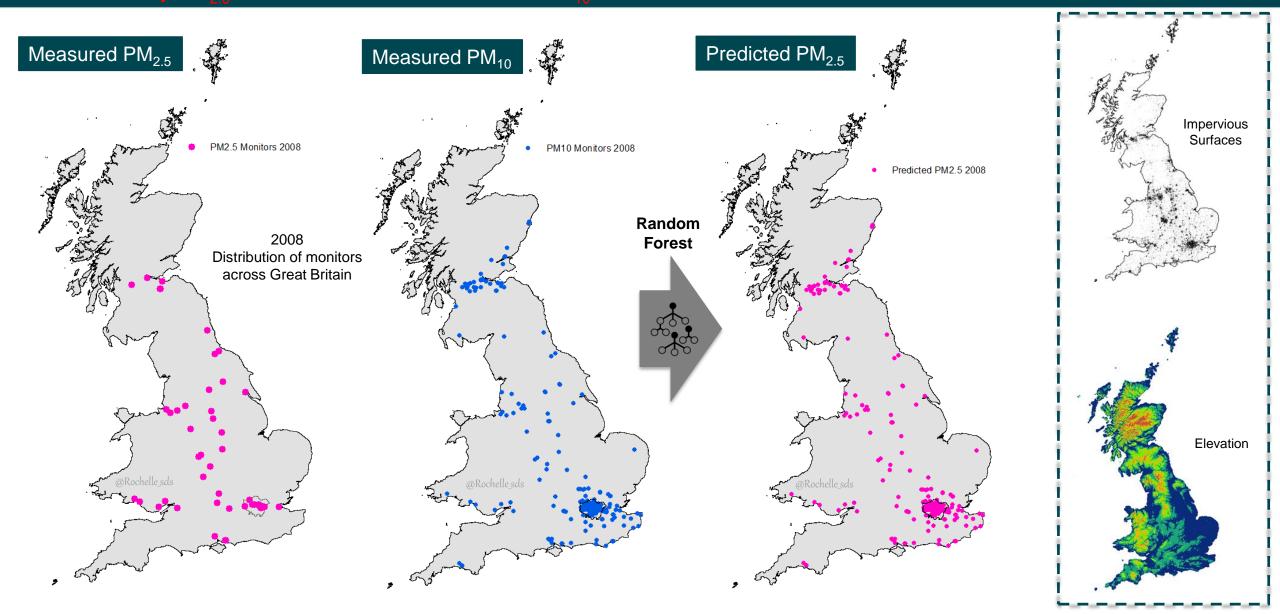
UK = 234.429 pixels London = ~1.830 pixels Scotland England Wale

Multi-stage machine learning spatio-temporal model for PM_{2.5}

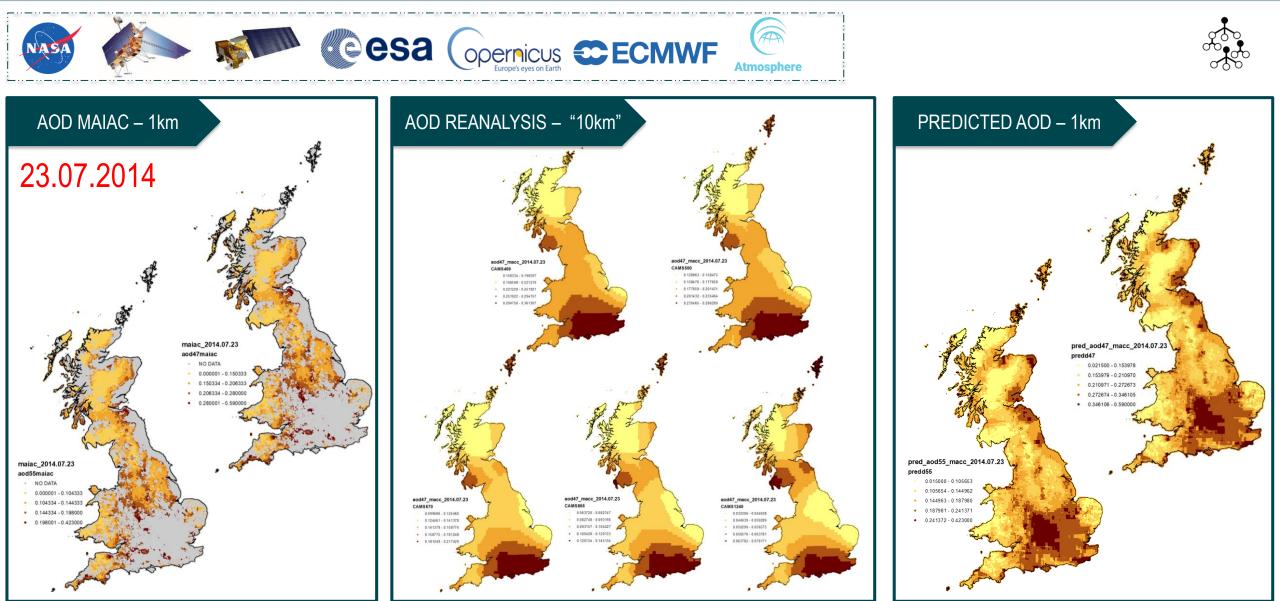




STAGE 1: Gap-filling Model Predict daily PM_{2.5} concentrations from co-located PM₁₀ stations

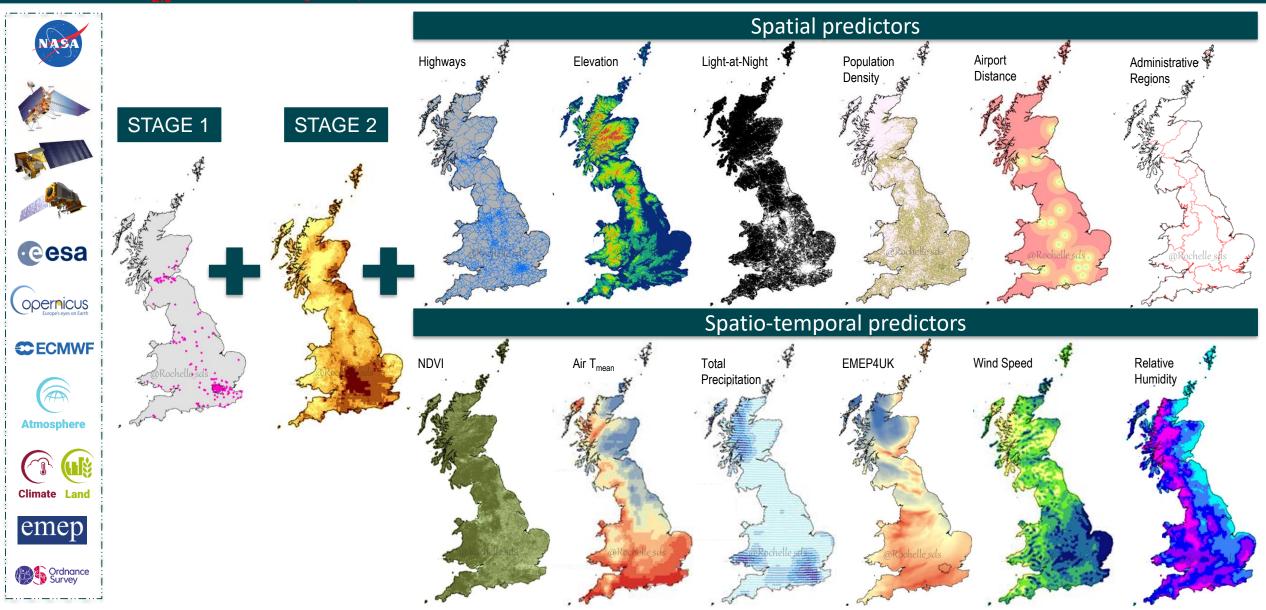


STAGE 2: AOD GAP-FILLING MODEL

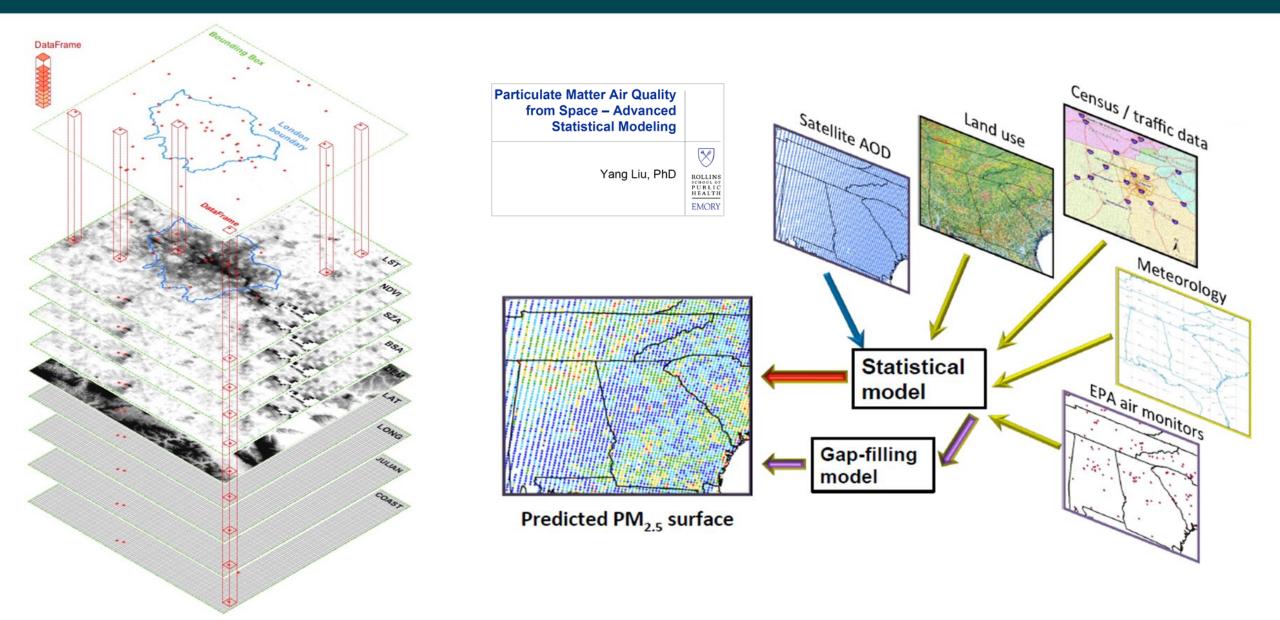


STAGE 3: Test ≠ Satellite-based ML Models

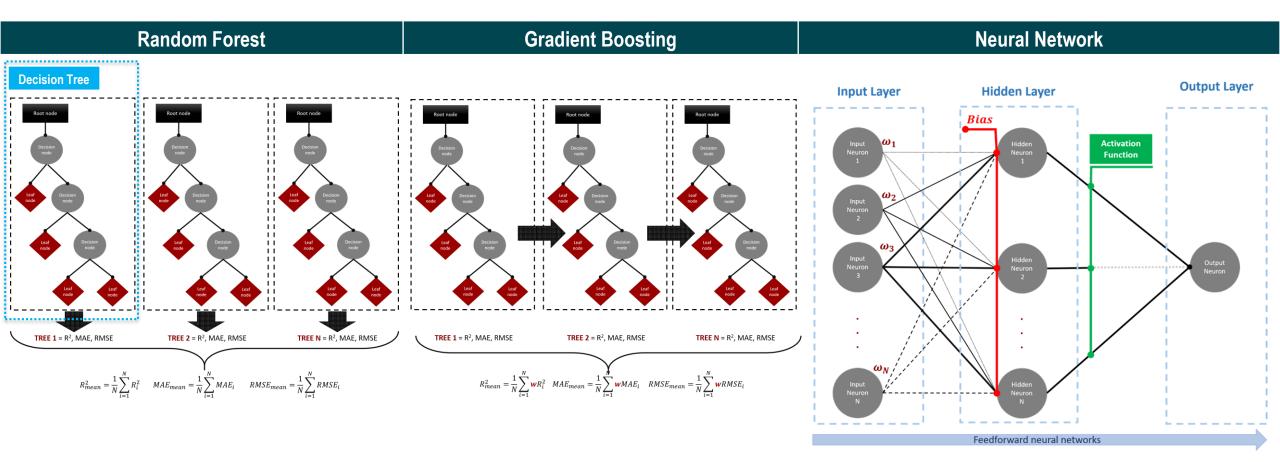
Predict PM_{2.5} at 1 km² using the parsimonious satellite-based ML model



Data Synchronisation + Gap-filling Model + Advanced Statistical Modelling



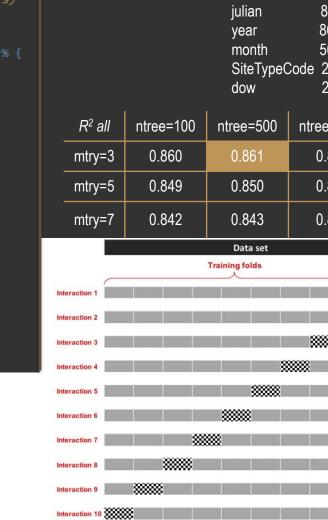
Methods: Machine Learning Algorithms



Results: STAGE 1 - Gap-filling Model

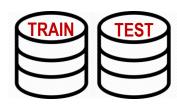
variable.importance ################### Predicted PM_{2.5} R ### OPTIMISATION USING SPATIO-TEMPORAL CROSS-VALIDATION ### ### RESULTS ### pm10 15351814.3 ************* longitude 1158180.8 for (ntree in c(100, 500, 1000)){ 1066338.3 latitude for (mtry in c(3,5,7)){ ## DEFAULT: sqrt(num.predictors) 875359.1 julian cat("\n", "ntree=", ntree, "| mtry=", mtry, "\n") 868112.3 year Ş 505182.1 month final = foreach(i=1:10, .packages=c("data.table","ranger"))%dopar% { SiteTypeCode 292421.0 Predicted PM2.5 2008 (pm25 ~ pm10 + julian mod 266770.8 dow latitude + longitude + SiteTypeCode + year month dow $R^2 all$ ntree=100 ntree=500 ntree=1000 (stg1, split!=i), data= num.trees=ntree, mtry=3 0.861 0.860 0.861 mtrv=mtrv. respect.unordered.factors=TRUE, 0.849 0.850 mtry=5 0.850 verbose=TRUE) <- subset(stg1, split==i) test 0.842 0.843 0.843 mtry=7 <- predict(mod, test) <predictions</pre> test\$pred.rf test\$itercv <- i Data set Measured PM_{2.5} (date, code.source, pm25, pred.rf, itercv)]} test[, Test fold **Training folds** mod.cv = do.call(rbind, final) ***** ### REGRESS PREDICTED AGAINST OBSERVED ### linear.pm25 <- l (pm25~pred.rf, data=mod.cv) r2.all (linear.pm25)\$r.squared **Predictors:** 8 variables Train/Test data: Air Quality monitors

Total Size: ~ 260.000 Model Design: 1 model for 16 years



Results: <u>STAGE 2</u> – AOD Gap-filling Model

######################################		######################################	R ² .stage 2	AOD 470	AOD 550	
************************************	2003		0.960	0.960		
-	[:] ormula, lata = stage2.train,	variable.importance Julian 9926.3528	2004	0.926	0.926	
m	<pre>method = "ranger", metric = "RMSE", num.trees = 50, tuneGrid = expand.grid(.mtry = 20), trControl = trainControl(</pre>	CAMS_469_12 4722.1932		0.935	0.934	
n		CAMS_550_12 4340.4057 v 2176.8599	2006	0.955	0.955	
		y 2176.8599 x 1818.0451 CAMS_AOD670_12 874.2431 CAMS_AOD865_12 572.2148	2007	0.960	0.961	
	number=10, allowParallel=T,		2008	0.932	0.931	
	verboseIter=T)	CAMS_AOD469_15 531.0689	2009	0.935	0.935	
• • • • • • • • • • • • • • • • • • •	CAMS_AOD1240_12 513.8520 CAMS_AOD1240_18 479.6304		0.919	0.918		
#### REGRESS THE PREDICTED AGAI		2011	0.957	0.970		
		2012	0.939	0.939		
<pre>stage2.valid\$pred <- predict(ra linear.model <- lm(formula</pre>		2013	0.942	0.942		
r2.stage2 <- summary(linear.model)\$r.squared		2014	0.921	0.920		
		2015	0.914	0.914		
		2016	0.923	0.923		
 Optimised RF : ntree=50 mtry=20 		2017	0.911	0.910		
			2018	0.921	0.921	

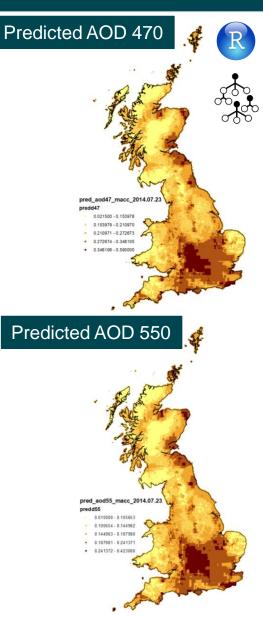


Predictors: 43 variables

Train/Test data: Satellite 1km² grid

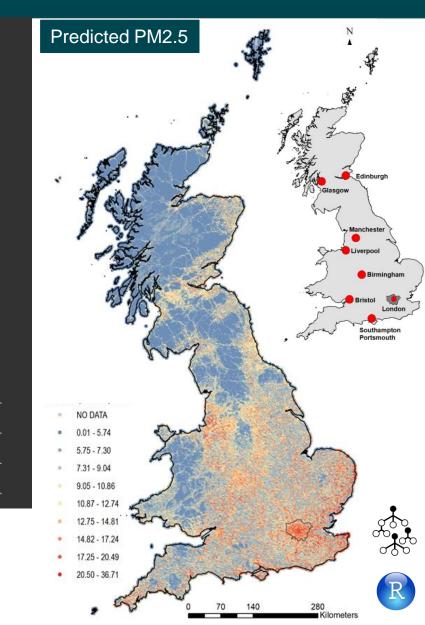
Total Size: ~ 7 Million by year and AOD type (112 Million for 16 years)

Model Design: 1 model by year and AOD type (i.e. 16 models for AOD 470 and 16 for AOD550)



Results: STAGE 3 – Test ≠ Satellite-based ML Models

LONDON **OPICA** MEI



OPTIMISATION USING SPATIO-TEMPORAL CROSS-VALIDATION ###

<pre>for (ntree in c(100, 500,10 for (mtry in c(7,70,20)){</pre>	
<pre>cat("\n", "ntree=", ntr</pre>	ee, " mtry=", mtry, "\n")
<pre>final=foreach (i=1:10, print(i)</pre>	<pre>.packages=c("data.table","ranger")) %dopar%</pre>
test\$logpred.rf	<- subset(stg3, split==i) <- predict(mod, test)\$predictions
test\$itercv <- i	<- exp(test\$logpred.rf)
	<pre>id.id, code.source, pm25pred.meas, f, logpm25, logpred.rf, itercv)]</pre>

stage3.cv = do.call(rbind, final)

REGRESS THE PREDICTED AGAINST OBSERVED ####

(pm25pred.meas~exppred.rf, data=stage3.cv) linear.all <- lm y(linear.all)\$r.squared r2.all

	R².all	ntree=100	ntree=500	ntree=1000
	mtry=7	0.670	0.675	0.675
	mtry=10	0.687	0.691	0.691
-	mtry=20	0.700	0.702	0.702

Predictors: 42 variables

Train/Test data: Air Quality monitors Total Size: ~ 100.000 by year

Model Design: 1 model by year

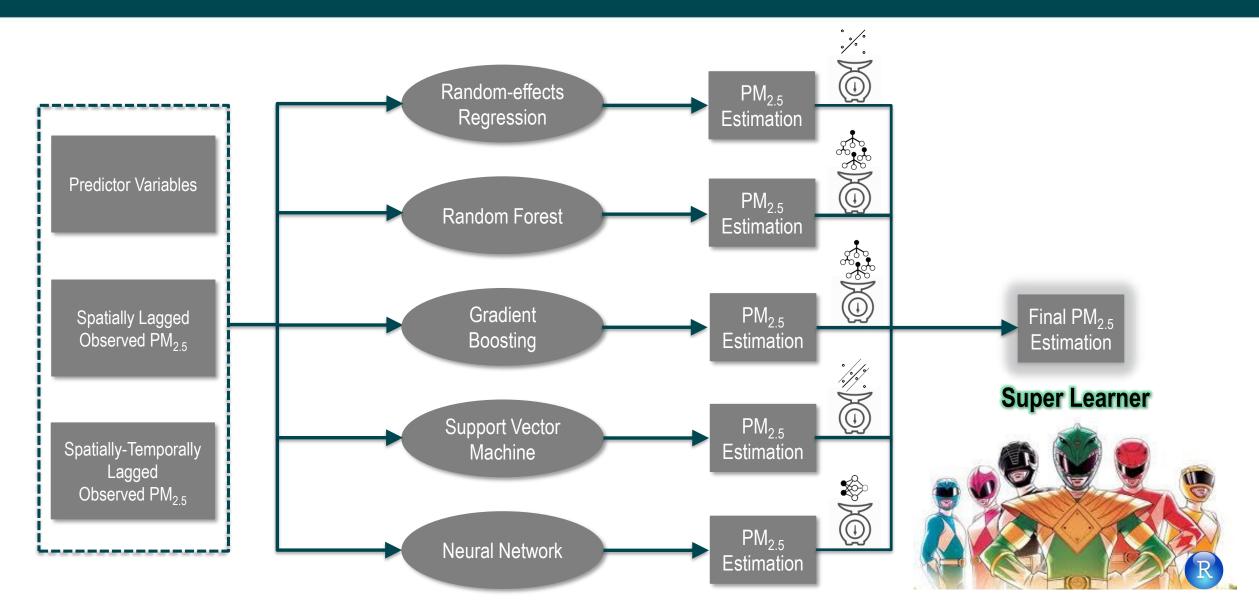
RESULTS ###

Variable Importance

Wind Direction	3774.673120
Distance from Sea	2921.701911
Wind Speed	1803.228131
Day of year	1780.716491
Mean Precipitation	1725.783224
Month(factor)	1700.169657
Planetary Boundary Layer_12h	1471.014341
Mean Temperature	1408.845640
Planetary Boundary Layer_0h	1291.013732
Mean Sea Pressure	1103.636722
Elevation	873.211102
Stage2-AOD550	833.542341
Stage2-AOD470	822.952578

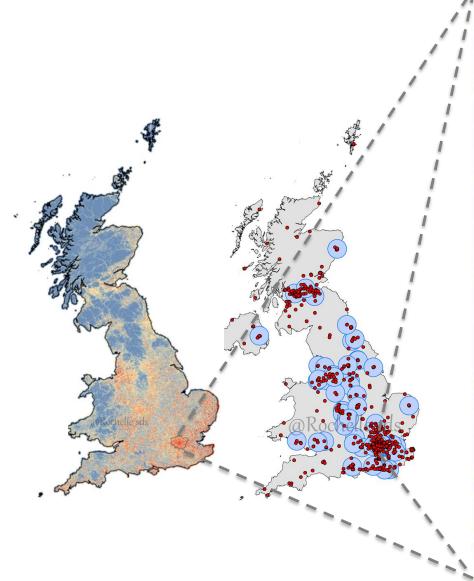
R².all	ntree=100	ntree=500	ntree=1000	
mtry=7	0.670	0.675	0.675	
mtry=10	0.687	0.691	0.691	
mtry=20	0.700	0.702	0.702	

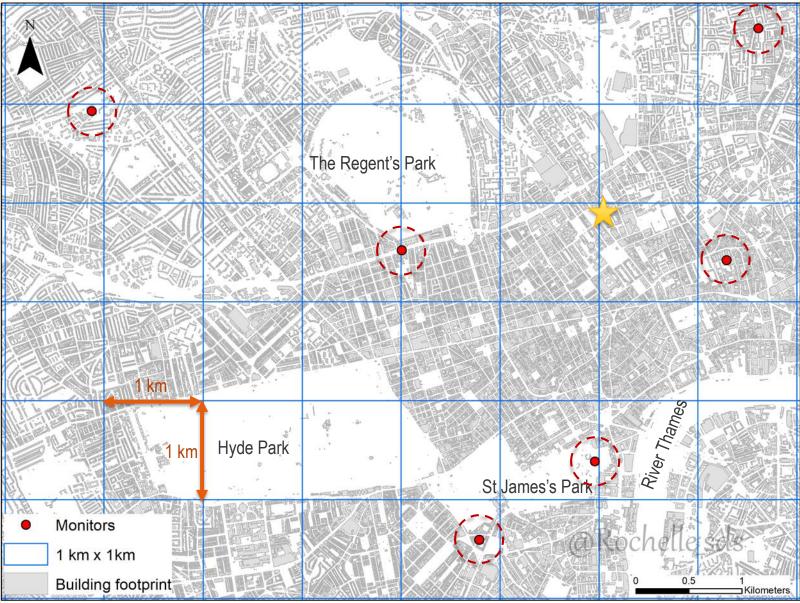
Explore the Ensemble ML Models



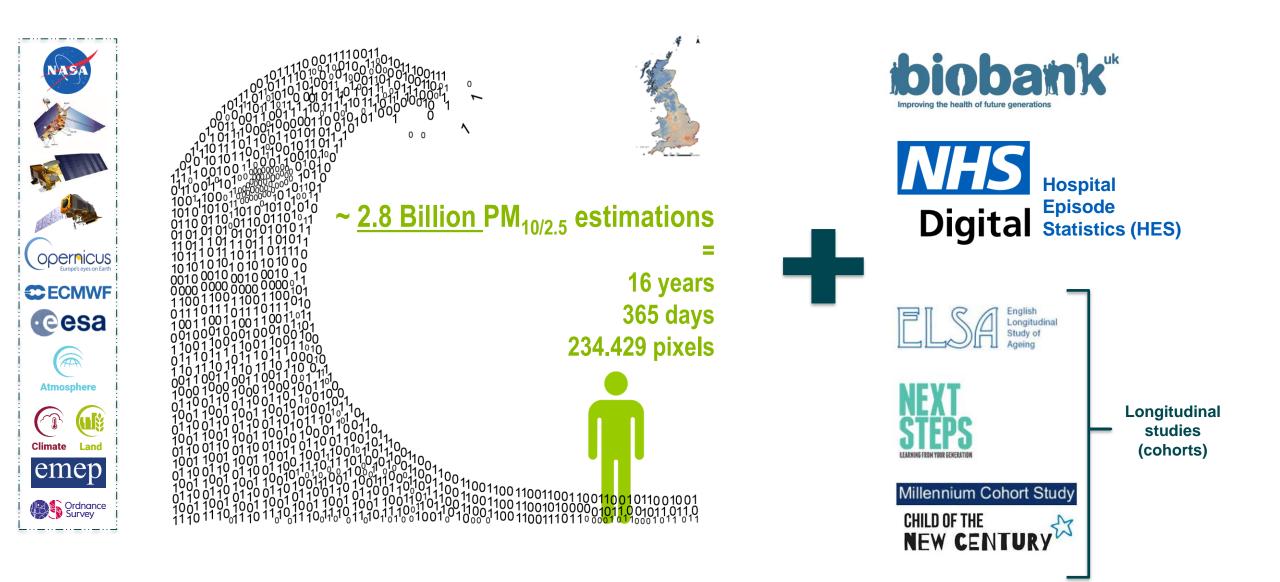
STAGE 5: Downscaling the PM_{2.5} Estimations

Predict PM25 concentrations at the monitor level using small-scale predictors





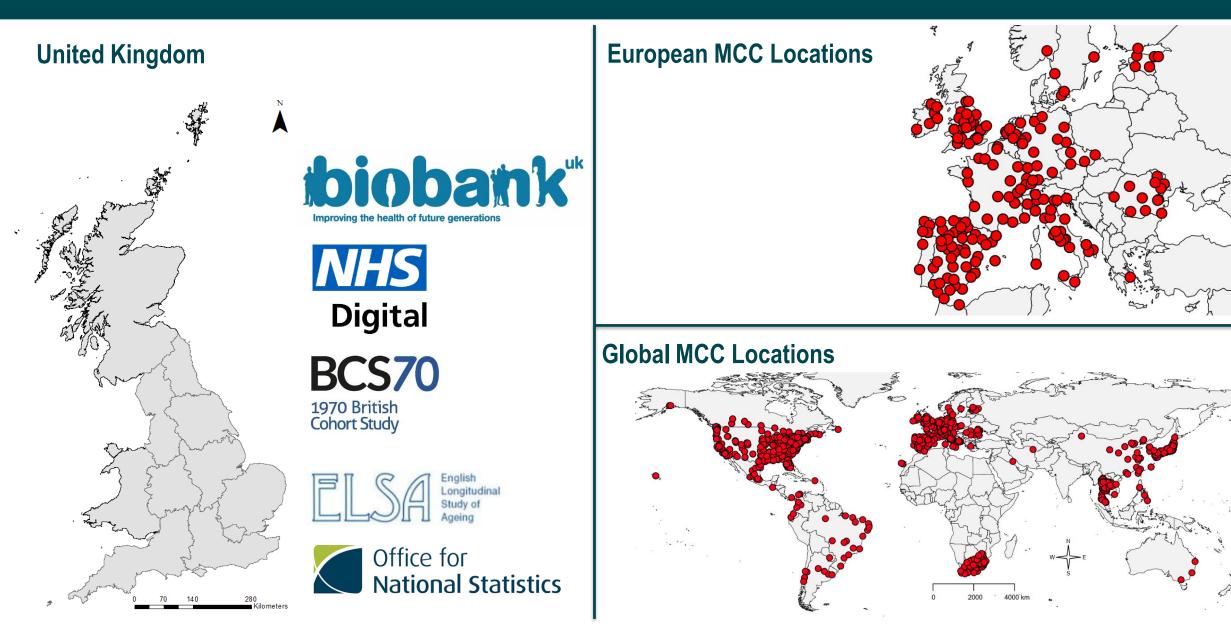
Connect with Health Data



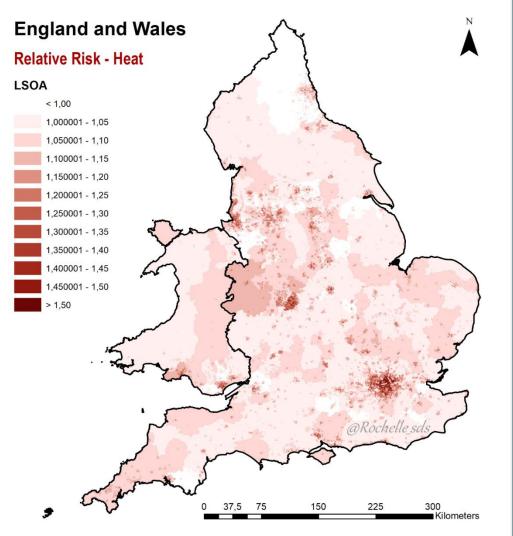
Connect with Worldwide Health Data

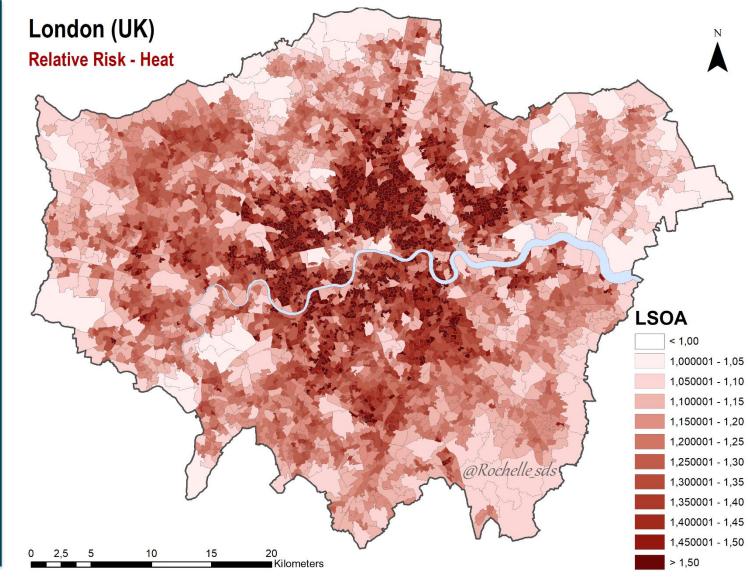
MCC Collaborative Research Network

An international research program on the associations between environmental stressors, climate, and health

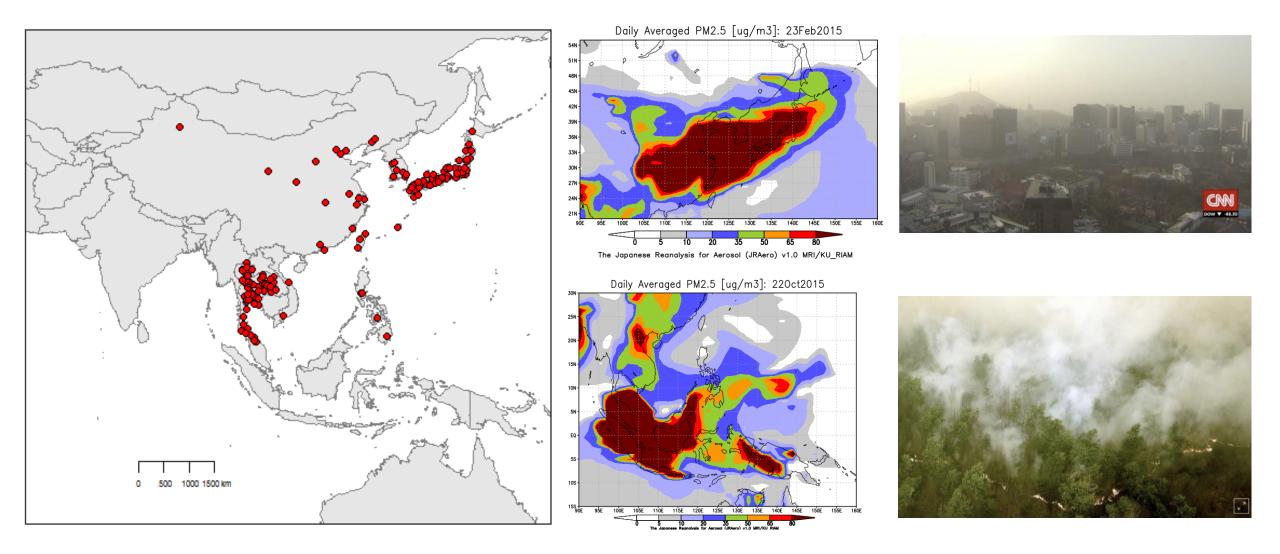


Modelling Area–specific Environmental Risks





Analysis of Health Effects of Transboundary Pollution



Thank you

Rochelle Schneider

Senior Research Fellow in Geospatial Data Science

Antonio Gasparrini

Professor of Biostatistics and Epidemiology

