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1. Overview of Statistical Analysis Plan (SAP) 

This document sets out the proposed presentation and analysis for the main paper(s) 

reporting the results from main elements of the PERMIT study that will assess the relative 

effectiveness of second-line antidiabetic drug treatments added on to metformin in type 2 

diabetes from individual patient data extracted from the Clinical Practice Research Datalink 

(CPRD) and linked datasets. This document should be read in conjunction with the study 

protocol,1 and the preceding description of the study cohort.2 The purpose of the SAP is to 

pre-specify the main analyses that will be reported in subsequent papers. Any subsequent 

exploratory analyses will not be bound by this strategy. Suggestions for subsequent analyses 

by oversight committees, journal editors or referees, will be considered carefully in line with 

the principles of this analysis plan. Any deviations from the statistical analysis plan will be 

described and justified in the final report to the funder. 

The SAP is structured as follows: in Section 2, we provide an overview of the PERMIT study, 

and describe the main objectives pertaining to this SAP. In Section 3, we describe the data 

sources and the main ‘standpoints’ of the PERMIT ‘target trial emulation’. A target trial is a 

hypothetical pragmatic RCT for assessing comparative effectiveness using observational 

data that is designed to minimise prognostic differences between the comparison groups.3,4 

The target trial framework requires the study to define the main elements of the target 

trial’s protocol, including eligibility criteria, and the treatment strategies. The PERMIT target 

trial will apply eligibility criteria to identify people with Type 2 diabetes mellitus (T2DM) of 

similar prognosis prior to initiating second-line antidiabetic drug treatments added on to 

metformin but different treatment assignments, and will compare their outcomes over the 

subsequent 2 years. In Section 4, we describe the proposed analyses, and in particular detail 
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the instrumental variable analysis, which aims to provide accurate estimates of treatment 

effectiveness even when there are residual baseline prognostic differences between the 

comparison groups.5 In section 5, we outline the main tables and figures that we anticipate 

presenting in the main paper and supplementary appendices.   

2. Background to the PERMIT study 

People living with T2DM are usually prescribed metformin monotherapy as first-line oral 

antidiabetic treatment to control blood glucose, after blood glucose fails to be controlled by 

lifestyle interventions.6 The National Institute of Health and Care Excellence (NICE) then 

recommends several glucose lowering drug classes, added on to metformin, as second-line 

oral antidiabetic treatment if metformin monotherapy inadequately controls blood glucose 

and the person tolerates metformin monotherapy. These drug classes include sulfonylureas 

(SU), dipeptidyl peptidase-4 inhibitors (DPP4i), and, for patients who are at significant risk of 

hypoglycaemia or for whom sulfonylurea is contraindicated, sodium-glucose co-transporter 

2 inhibitors (SGLT2i).6 In 2022, NICE updated guidelines to recommend SGLT2i in 

combination with metformin for those with a high risk of, or with, cardiovascular disease; 

however, for all other people, any of these 3 treatments may be suitable.6 Similarly, 

international guidance and consensus reports recommend SGLT2i for people with 

established atherosclerotic CVD, heart failure, and chronic kidney disease (CKD).7 These 

guidelines/guidance draw on evidence from placebo-controlled randomised controlled trials 

(RCTs) showing improved CVD and kidney disease outcomes in people prescribed SGLT2i. 

The GRADE study, published in 2022,8-10 compared glycaemic control and cardiovascular and 

kidney endpoints between SU, DPP4i, glucagon-like peptide-1 receptor agonist (GLP1-RA), 
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and insulin. However, there are no published head-to-head RCTs that directly compare SU, 

DPP4i, and SGLT2i. A network meta-analysis published in 2022 by NICE11 compared 

cardiovascular outcomes between several classes of antidiabetic medicines using fifteen 

placebo-controlled RCTs, and one trial with a direct comparison (DPP4i vs SU).12 The study 

reported that empagliflozin (SLGT2i drug class) and subcutaneous semaglutide (glucagon-

like peptide-1 receptor agonist (GLP1-RA)) reduced all-cause and cardiovascular mortality 

compared to other drug classes, and to placebo. The network meta-analysis also found that 

several SGLT2i drugs reduced rates of heart failure hospitalisation, while only semaglutide 

reported clinically meaningful benefits in terms of reduced rates of major adverse 

cardiovascular event (MACE), according to the composite three-point scale.   

While this network meta-analysis11 and placebo-controlled trials indicate that of the 3 

classes of second-line antidiabetic drug treatments included in this study that are most 

commonly prescribed in the UK, SGLT2i may be the most effective in preventing 

cardiovascular outcomes, there is a lack of head-to-head trial evidence that directly assesses 

which drug class is most effective at controlling blood glucose levels, and reducing the 

incidence of the complications of diabetes among people with T2DM. Current NICE 

guidelines do not recommend a specific class of second-line antidiabetic drug treatment for 

people not at high-risk or with cardiovascular disease. Previous research has highlighted the 

wide variation in second-line oral antidiabetic treatment prescribing in the United 

Kingdom.13   

The PERMIT study aims to use this variation to conduct a natural experiment – that is, using 

an instrumental variable approach5 to find a ‘natural randomiser’ – using routinely collected 

health data in England to compare the relative effectiveness and cost-effectiveness of SU, 
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DPP4i, and SGLT2i as second-line oral antidiabetic treatment, overall, and among clinically-

defined subgroups. A major challenge for estimating treatment effectiveness from routine 

data is the potential for confounding by indication that may arise due to measured or 

unmeasured prognostic differences (e.g., different levels of glycaemic control) that may 

arise between the treatment groups being compared, prior to starting second-line 

treatment. We will address this challenge in two ways. First, we will follow the principles of 

target trial emulation, by applying consistent eligibility criteria across the comparators of 

interest defining treatment strategies and outcomes, follow-up and the causal contrasts of 

interest.4,14 Second, we will undertake an instrumental variable (IV) analysis, as this can 

provide accurate estimates of treatment effectiveness even when there are unmeasured 

differences between the comparison groups.5,15 We will follow previous studies in using 

variation in provider prescribing as an instrumental variable to compare outcomes across 

patients receiving second-line treatments added on to metformin with these 3 classes.15 The 

next sections detail the data sources that the study will use, before outlining the target trial 

principles that we will follow.   

3. Target Trial Emulation 

3.1 Data sources 

Primary care data 

We will use primary care data from the Clinical Practice Research Datalink (CPRD) Gold and 

Aurum datasets, which includes approximately 20% of the UK population.16,17 General 

Practices (GP) in the United Kingdom (UK) using Vision and EMIS software contribute to the 
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CPRD Gold and Aurum datasets, respectively. CPRD data include longitudinal information on 

primary care diagnoses, prescriptions, demographic information, and laboratory test results.   

Secondary care data 

We will link primary care CPRD data to Hospital Episode Statistics (HES) admitted patient 

care (APC) data, which includes information related to all in-patient hospitalisations in 

England funded by the National Health Service (NHS), and reports admission and discharge 

dates, diagnoses, and demographic information.18 Our primary care population will 

therefore be restricted to those registered at GP practices in England. 

Other health data 

We will link the CPRD-HES data to mortality data from England for the Office of National 

Statistics (ONS) and the patient-level Index of Multiple Deprivation (IMD).19,20 ONS data 

include the date and cause of death date (International Classification of Diseases 10th 

edition (ICD-10) codes) for all deaths registered in England and Wales. The IMD is a 

composite score which ranks individuals’ deprivation according to the local area of their 

place of residence. IMD scores will be reported in quintiles (from 1, resident in the least 

deprived, to 5 the most deprived local area). 

3.2 Study population 

In line with target trial principles, we will define the study population according to eligibility 

criteria, which have to be met prior to ‘time zero’ (i.e. ‘baseline’) and is the analogue to the 

time of randomisation in an RCT. In the PERMIT study, time zero is defined as the time of 

the first prescription for any of the second-line treatments (see section 2.4). 
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We will include people with T2DM who intensified from first- to second-line oral 

antidiabetic treatment between 1 January 2015 and 31 December 2020. We choose to start 

the study in 2015, since SGLT2i were rarely used prior to 2014,13 and we require 1 year of 

prescribing history to define the instrument in our instrumental variable analysis. The 

PERMIT study population will be defined by people with T2DM who were registered with 

GPs in England, as the instrumental variable is the previous prescribing history of groups of 

GPs defined at the level of the Clinical Commissioning Group (CCG) (now Integrated Care 

Systems). The inclusion criteria also include those individuals whose primary care data were 

linked to HES/ONS/IMD data to enable the requisite outcomes to be reported (see section 

2.5. Outcomes). Detailed inclusion/exclusion criteria are presented in Table 1. 

Table 1: Inclusion and exclusion criteria for the PERMIT study population 

Inclusion criteria Exclusion criteria 
• Aged ≥18 years (the study is of 

adults only). 
• T2DM diagnosis code, to avoid 

including people prescribed 
antidiabetic drugs for other 
indications (e.g., polycystic ovarian 
syndrome). 

• Prescribed metformin monotherapy 
as first-line oral antidiabetic 
treatment, on the same day or 
following a T2DM diagnosis. 

• Registered with GP in England with 
acceptable data standards flag by 
CPRD (to help ensure adequate data 
availability). 

• Registered with GP for ≥1 year prior 
to first metformin prescription (to 
help ensure adequate baseline data 
availability and reduce recording of 
past events as incident). 

• Prescribed >1 non-metformin 
antidiabetic drugs on the date of 
second-line treatment initiation 
(beyond study scope). 

• Initiates second-line oral 
antidiabetic treatment with drug 
class other than SU, DPP4i, or 
SGLT2i (beyond study scope). 

• Latest eGFR recorded by the GP is 
<30mL/min/1.73m2 (since at the 
time of data-collection most GPs 
would not have prescribed 
metformin for people with eGFR 
<30ml/min; the results from the 
DAPA-CKD trial (which did 
randomise people with eGFR less 
than 30ml/min/1.73m2) were only 
available towards the very end of 
the study period and are unlikely to 
have informed decisions taken in 
primary care). 
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• Initiate SU, DPP4i, or SGLT2i 
between 1 January 2015 to 31 
December 2020 (the study period). 

• At least 1 metformin prescription 
within 60 days prior to new second-
line drug, and at least one 
metformin prescription on the same 
day or within 60 days after new 
second-line drug, to ensure the 
person is adding on to metformin 
and not switching. 

• Linked to HES/ONS/IMD data (to 
help ensure outcomes are 
captured). 

• Women who have a record of 
pregnancy in primary care within 1 
year prior to second-line 
antidiabetic treatment initiation 
(since guidelines are different for 
this group). 

3.3 Sample size 

The effect of interest is the absolute difference between the change in haemoglobin 

A1c (HbA1c) from baseline to 12 months under a treatment (A) versus the change 

under the comparator treatment (B). Power calculations were conducted prior to 

accessing study data, recognising the Food & Drug Administration (FDA) 

recommendation that an average between-treatment absolute difference in HbA1c 

from baseline to 12 months of 4.4 mmol/mol (0.4 percentage points) is of clinical 

significance,21 and assuming a standard deviation for HbA1c at baseline of 14 

mmol/mol (1.3 percentage points).22 This difference will be calculated as: (HbA1c at 

12 months –baseline for treatment B)   – (HbA1c at 12 months – baseline for 

treatment A). We follow methodological recommendations for power calculations 

with IV designs and consider that the IV predicts 80% of those prescribed each 

second-line treatment, but also consider scenarios where the IV is weaker (70% 

compliance) and stronger (90% compliance).23 We require 80% power at the 5% (2-
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sided) level of statistical significance, but conservatively base the power calculations 

on a type I error corrected for the 3 comparison (I.e. use 5% / 3 as the significance 

level). 

Table 2 shows the requisite sample sizes for the 2 treatment groups projected to 

have the fewest participants (SU and SGLT2i). Note that while there is only a single 

primary outcome (HbA1C) and timepoint (12 months), there are several secondary 

endpoints and timepoints of interest. Rather than formally adjust for these multiple 

comparisons, we will recognise the ‘hypothesis generating’ nature of these 

comparisons in the interpretation of the results.23 

Table 2: Required sample size (N) for the IV design according to instrument strength 
(level of compliance) and magnitude of effect size at 80% power and 5% (2-sided) 
level of statistical significance 

Level of compliance (IV strength) 
70% 80% 90% 

Effect size: between-treatment 
difference in mean HbA1c reduction 
baseline to 12 months in mmol/mol and 
percentage points(%) 

SU SGLT2i SU SGLT2i SU SGLT2i 

3 mmol/mol (0.3 %) 4556 1952 3488 1495 2756 1181 
4 mmol/mol (0.4 %) 2563 1098 1962 841 1550 664 
5 mmol/mol (0.5 %) 1640 703 1256 538 992 425 

3.4 Treatments of interest 

We will compare (1) DPP4i versus SU, (2) SGLT2i versus SU, and (3) SGLT2i vs DPP4i all as 

second-line oral antidiabetic treatment and as add-ons to metformin. Although the latter 

are starting to be used more following the 2022 NICE guidelines update,6 our study period 

ends in 2021. 
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This study will use an intention-to-treat (ITT) approach, whereby each person will contribute 

follow-up to the original exposure group to which they were assigned, irrespective of which 

treatments they may be prescribed subsequently. To help with the interpretation of the ITT 

approach, we will report second-line treatment duration during follow-up. We will also 

report the proportion of each generic drug prescribed within each of the 3 drug classes. 

Second-line oral antidiabetic treatment initiation (first-stage intensification) will be the date 

of the first prescription for SU, DPP4i, or SGLT2i following metformin monotherapy 

(hereafter referred to as the ‘baseline’ date). To ensure that people are adding on to 

metformin monotherapy, and not switching, we will require at least one metformin 

prescription on the same day or within 60 days after the first prescription for the second-

line drug.24,25 We will consider the potential impact of immortal time bias, which arises 

because the individual must remain in the sample for at least 60 days for it to be 

determined whether they meet this criteria, in a sensitivity analysis (see section 3.7. 

Sensitivity analyses). The bias occurs as some events (e.g. censoring by death) cannot have 

occurred in this time window. 

3.5 Outcomes 

The primary outcome will be absolute change in HbA1c, reported in mmol/mol, at 12 

months follow-up recorded in CPRD between groups. This change in HbA1c will be 

quantified by contrasting follow-up versus baseline laboratory test data recorded on CPRD 

for each comparison group. We will use a window of ±90 days (3 months) around the 12-

month follow-up date for the primary outcome since pilot work showed substantial 

missingness in the recording of HbA1c at this time point. If there are more than one HbA1c 

measures recorded during the outcome window, we will use the HbA1c measure closest to 
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the 12-month follow-up date. Patients without the relevant measurement between 9 and 

15 months will be designated as having ‘missing 12-month data’ (see section 3.6. Missing 

data). For the baseline measure, we will use the most recent HbA1c prior to the baseline 

date (second-line treatment initiation), excluding any measures which were recorded over 

180 days prior to baseline. Those without an HbA1c measure within 180 days prior to 

baseline will be considered as having missing baseline HbA1c (see section 3.6. Missing data). 

Secondary outcomes that we will also investigate at 12-months post-baseline are: estimated 

mean difference between the comparison groups in the absolute change from baseline: in 

glomerular filtration rate (eGFR), body mass index (BMI), and systolic blood pressure (SBP). 

We will use the same strategy as for the primary outcome to define follow-up outcome 

measures for these secondary outcomes. However, as previous studies have suggested that 

in routine primary care data, these outcomes are measured less frequently than HbA1c, we 

will allow for baseline measures up to 540 days prior to the baseline timepoint (time zero).25 

For all continuous outcomes (HbA1c, eGFR, BMI, SBP), we will also report changes from 

baseline at multiple time points 6-, 24-, 36-, 48-, and 60-months follow-up, with the main 

presentation of results at 12- and 24- months. For each of the follow-up timepoints we will 

only consider observations within three months of the designated timepoint, and if no such 

observations are available the measure will be designated as ‘missing’ or ‘censored’.   

Additional secondary outcomes will be in the form of ‘time to first event’ and will include: 

(a) a 40% decline in eGFR from baseline, which could be a marker of the rarer outcome end-

stage kidney disease,26 (b) a major adverse kidney event (MAKE), a composite outcome for 

the earliest of a decline in eGFR from baseline of 40%, end-stage kidney disease (ESKD), and 

all-cause mortality,27 (c) heart failure hospitalisation, (d) 3-point major adverse 
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cardiovascular event (MACE), a composite outcome for the earliest of myocardial infarction 

(MI), stroke, and CVD death, (e) MI, (f) Stroke, and (g) all-cause mortality. Details to define 

each of these outcomes are found in Table 3. 

Table 3: List of primary and secondary outcomes and the data sources used to define them 

Type of 
outcome 

Outcome Data source Details 

Continuous Absolute 
change in 
HbA1c 

CPRD CPRD 
Laboratory measures of HbA1c 

Continuous Absolute 
change in 
eGFR 

CPRD CPRD 
Laboratory measures of serum creatinine, 
converted to eGFR using the 2009 CKD-EPI 
equation without adjustment for ethnicity 

Continuous Absolute 
change in BMI 

CPRD CPRD 
Measures of body weight and height, using 
a previously developed algorithm to define 
BMI in CPRD data28 

Continuous Absolute 
change in SBP 

CPRD CPRD 
Measures of systolic blood pressure 

Time-to-
event 

MACE, 
including MI, 
stroke, and all-
cause 
mortality 

CPRD, HES, 
ONS 

CPRD 
Diagnosis codes for MI, stroke 

HES 
Diagnosis codes for MI, stroke in the first or 
second diagnostic position of any episode 
in a spell) 

ONS 
Death date 

Time-to-
event 

MI CPRD, HES CPRD 
Diagnosis code for MI 

HES 
Diagnosis code for MI in the first or second 
diagnostic position of any episode in a spell 

Time-to-
event 

Stroke CPRD, HES CPRD 
Diagnosis code for stroke 

HES 
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Type of 
outcome 

Outcome Data source Details 

Diagnosis code for stroke in the first or 
second episode of any episode in a spell 

Time-to-
event 

All-cause 
mortality 

ONS ONS 
Death date 

Time-to-
event 

Heart failure 
hospitalisation 

HES HES 
Diagnosis code for HF in the first or second 
diagnostic position of any episode in a spell 

Time-to-
event 

Major adverse 
kidney event 
(MAKE), a 
composite 
outcome 
including 40% 
decline in 
eGFR, ESKD, 
and all-cause 
mortality 

CPRD, ONS CPRD 
40% decline in eGFR at baseline (using 
eGFR derived from laboratory measures of 
serum creatinine) 
ESKD (clinical codes diagnosing 
ESKD/chronic dialysis/kidney transplant) 

ONS   
Death date 

Time-to-
event 

40% decline in 
eGFR from 
baseline, 
which could be 
a proxy for the 
rarer ESKD 
outcome26 

CPRD CPRD 
Laboratory measures for serum creatinine 
to derive eGFR using the 2009 CKD-EPI 
equation without correction for ethnicity 

Time-to-
event 

ESKD CPRD 
Clinical codes for diagnosis of ESKD, or 
dialysis/kidney transplant codes 

Other secondary outcomes will be exploratory, and are not planned for inclusion in the main 

paper. These include clinical measures from the blood (High Density Lipoprotein (HDL), Low 

Density Lipoprotein (LDL), total cholesterol, triglycerides, diastolic blood pressure (DBP)) 

analysed as continuous outcomes, and additional macro- and micro-vascular outcomes 

(unstable angina, hypoglycaemia, nephropathy, and lower limb amputation).   
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We will describe process measures including: time to cessation of second-line antidiabetic 

treatment, the proportion of people who stop their second-line treatment, and those who 

switch to a further antidiabetic drug. 

Time-to-event (TTE) outcomes will be defined in CPRD data using Read codes (CPRD Gold), 

SNOMED codes (CPRD Aurum), or laboratory measures captured in the primary care record. 

Outcomes will be defined in HES data using ICD-10 codes, restricting to those diagnoses in 

the first or second diagnostic position of any episode during a single hospitalisation 

(referred to as a “spell”), to ensure we are capturing the incident outcome event (usually 

recorded in the first or second diagnostic position) and not a comorbidity (usually recorded 

in the third to the twentieth diagnostic position of an episode). 

Continuous outcomes that will be defined in CPRD data, include HbA1c, SBP, DBP, HDL, LDL, 

total cholesterol, and triglycerides identified by searching the CPRD laboratory result data 

for recorded measures. eGFR will be defined by using serum creatinine (SCr) recorded in 

CPRD laboratory result data. The 2009 CKD-EPI equation, recommended by NICE,29 will be 

used to calculate eGFR, without adjusting for ethnicity. BMI will be defined using a 

previously developed algorithm for CPRD data.28 We will consider outcome values recorded 

within ±3 months from each follow-up time point of interest, to minimise outcome data 

missingness. The closest value to the follow-up time point of interest (e.g., 1 year) will be 

used, should there be >1 value recorded in the outcome time window. 

Follow-up for all patients will be censored at the date of death, transfer out of the practice, 

end of data collection, or at 24-months follow-up, whichever is earliest. For outcomes 

measured in CPRD only (all continuous outcomes), the end of follow-up is 31 December 

2021 (the end of primary care follow-up data). For outcomes measured in CPRD, HES, 
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and/or ONS, the end of follow-up is 31 March 2021 (the end of secondary care and ONS 

follow-up data). 

3.6 Potential confounders/covariables 

Using primary care data collected prior to second-line treatment initiation, we will extract 

information on patient characteristics (age, sex, ethnicity), time since T2DM diagnosis, time 

since first-line treatment initiation, and general practice size (reported as the number of 

patients registered with the GP in 2014). Using both primary and secondary care data, we 

will also identify relevant co-prescriptions prescribed within 60 days of baseline (renin-

angiotensin system inhibitors (RASi), statins) and comorbidities at baseline (previous 

myocardial infarction (MI), unstable angina, stroke, hypoglycaemia, congestive heart failure 

(CHF), history of cancer (any), history of proteinuria, advanced eye disease, and lower 

extremity amputation). We will describe impaired kidney function defined using eGFR 

measures from primary care, with cut points defined by the Kidney Disease Improving 

Global Outcomes (KDIGO) guidelines for CKD, but without requiring two measures 3 months 

apart.30 We will also describe the most recent measure of HbA1c, SBP, DBP, eGFR and BMI,28 

prior to baseline, as well as smoking and alcohol status using primary care records. IMD 

quintiles will be used to describe deprivation status. All codelists used to derive covariables 

will be published alongside any papers.   

Table 4: List of covariates and the data sources used to define them 

Covariable Data source Details 
Age CPRD CPRD 

Age at baseline derived using the year of birth 
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Covariable Data source Details 
Sex CPRD CPRD 

Sex recorded in CPRD 
Ethnicity CPRD, HES CPRD 

Clinical code (Read or Snomed) indicating 
ethnicity, further categorised into four 
categories (White, South Asian, Black, 
Mixed/Other) 

HES 
Demographic data entered at in-patient 
hospitalisation, further categorised into four 
categories (White, South Asian, Black, 
Mixed/Other) 

Where CPRD ethnicity is missing, HES ethnicity is 
used to define people’s ethnicity. Where 
ethnicities disagree, that recorded in CPRD is 
used. 

Time since type 2 
diabetes diagnosis 

CPRD CPRD 
Days between the first diagnosis code (Read or 
Snomed) for T2DM and baseline 

Time on first-line 
(metformin 
monotherapy) 

CPRD CPRD 
Days between the first prescription for 
metformin and baseline 

GP size CPRD CPRD 
Number of patients actively registered with the 
GP to which the patient belongs, derived using 
the CPRD denominator file, uses 2014 figures 

NHS Region CPRD CPRD 
The region in which the GP practice is located to 
which each patient is registered. Regions 
include: East of England, London, Midlands, 
North East and Yorkshire, North West, South 
East, and South West 

Co-prescriptions 
prescribed within 60 
days of baseline 
(including RASi and 
statins) 

CPRD CPRD 
At least one prescription for the drug class of 
interest in the prescription history in the primary 
care record, within 60 days of baseline. 

Comorbidities at 
baseline defined in 
primary and 
secondary care 
(including previous 
MI, unstable angina, 
stroke, 

CPRD and HES CPRD 
Diagnosis code (Read or Snomed) for each 
comorbidity prior to or the same day as baseline 

HES 
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Covariable Data source Details 
hypoglycaemia, 
CHF) 

Diagnosis code (ICD-10) for each comorbidity 
prior to or the same day as baseline in any 
diagnostic position of any episode of a spell 

Comorbidities at 
baseline defined in 
primary care (cancer 
(any), advanced eye 
disease, lower 
extremity 
amputation, 
proteinuria) 

CPRD CPRD 
Diagnosis code (Read or Snomed) for 
comorbidity prior to or the same day as baseline 

HbA1c CPRD CPRD 
Laboratory test recording the most recent HbA1c 
recorded within 180 days prior to baseline. Units 
reported as mmol/mol (tests recording HbA1c in 
% will be converted to mmol/mol). 

eGFR and eGFR/CKD 
status 

CPRD CPRD 
Using the eGFR derived from serum creatinine 
using the CKD-EPI equation without adjustment 
for ethnicity recorded within 540 days prior to 
baseline, we will group people as either having 
eGFR≥60mL/min/1.73m2 or 
eGFR<60mL/min/1.73m2 (indicating impaired 
kidney function) 

SBP and DBP CPRD CPRD 
Clinical measures captured in CPRD within 540 
days prior to baseline 

BMI CPRD CPRD 
BMI derived from weight and height measures 
entered by the GP (preferred), or BMI entered 
directly by the GP 

Smoking status CPRD CPRD 
Clinical codes describing smoking status in the 
primary care record, using an algorithm 
previously defined in CPRD data 

Alcohol status CPRD CPRD 
Clinical codes describing alcohol intake in the 
primary care record, using an algorithm 
previously defined in CPRD data 

In-patient 
hospitalisation (any 
reason) in the past 
year 

HES HES 
At least one spell (hospitalisation) recorded in 
the patient’s secondary care record (HES 
admitted patient care record) in the year prior to 
baseline 
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4. Analysis 

Observational studies that adjust only for measured confounding variables are liable to 

report biased estimates of treatment effectiveness. We propose an IV study design as this 

can provide accurate estimates of effectiveness, even when there are unmeasured 

differences between the comparison groups.5 The proposed IV exploits the wide variation 

across NHS CCGs (now ICSs) in the proportion of people with T2DM prescribed either SU, 

DPP4is, or SGLT2is, in addition to metformin. We refer to this as the tendency to prescribe 

(TTP) a particular treatment. The IV will be the prescribing history in each CCG. This will be 

defined as the proportion of relevant prescriptions within the CCG for each second-line oral 

antidiabetic treatment during the 12 months preceding the second-line treatment initiation 

of the patient currently under consideration. The IV for the prescription of each second-line 

antidiabetic treatment is the TTP of the CCG rather than the individual GP, because the 

choice of second-line treatment may involve the hospital diabetologist, the GP, other 

health-care professionals, and the patient.   

4.1 The key IV assumptions 

For the CCG prescribing history to be a valid instrument for the treatment prescribed, it 

must:   

i) Strongly predict the treatment prescribed;   

ii) Be independent of unmeasured baseline covariates; and   

iii) Affect the outcome only through the treatment prescribed.5 

The IV design will lead to bias if the prescribing history of the CCG has a direct effect on the 

outcome. For instance, a valid IV encourages treatment receipt, in this case of alternative 
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drugs, but does not have a direct effect on the outcome, for example HbA1c, except through 

the treatment received (see Figure 1). Our study draws from literature which shows that 

clinicians’ prescribing history can be an IV when it strongly predicts the treatment offered, 

but does not have an independent effect on the outcome.3,15,31 Our proposed IV design 

follows research in pharmaco-epidemiology that uses provider preference as an instrument 

for treatment prescribed.15   

Figure 1: IV design to be applied in the PERMIT study1 

Clinicians’ prescribing history is likely to be independent of unmeasured confounders, since 

most patients choose to attend their local GP practice without considering their prescribing 

history. It seems unlikely that the CCGs prescribing history would have a direct effect on the 

patients’ outcomes. One potential concern is that those time periods or CCGs which have a 

higher TTP the more recently available drug class of SGLT2i, might be associated with better 

quality of care provided. We address this concern by including covariates for ‘time period’ 

and NHS region within the IV analysis (see later section). 



21 

4.2 Checking IV assumptions 

We will assess whether TTP meets the criteria for a valid and strong IV for each treatment of 

interest. First, we will assess whether the CCG-level TTP for each treatment is strongly 

associated with prescription of that treatment by reporting the Cragg-Donald F-statistic. 

Secondly, while it is not possible to assess the assumption that the IV is uncorrelated with 

the outcomes, except through the intervention, we will assess whether the CCG-level TTP 

balances the observed covariates.32,33   

4.3 Accounting for defiers/always takers 

Most IV applications assume that there are ‘no defiers’ also known as the monotonicity 

assumption. This means that a patient’s treatment status is influenced by the status of the 

instrument (i.e., a patient is more likely to receive the treatment their CCG tends to 

prescribe more often than any of the other two alternatives). It is also assumed there are no 

‘always takers’ or ‘never takers’ implying that there are no patients who would definitely 

receive any one of the three classes of treatment irrespective of their CCG’s TTP.34 That is, 

we assume the probability for receiving any of the three second-line treatments is between 

0 and 1 for all people included in the study. 

4.4 Two stage Least Squares (2SLS) 

A common approach to IV analysis is to undertake two-stage least squares (2SLS) 

estimation. We will undertake preliminary analyses with 2SLS, whereby in the first stage, we 

will estimate a linear probability model for each of the treatments of interest (DPP4i or 

SGLT2i using SU as the reference category) on the instruments (TTP for either treatment), 

time fixed effects, and the covariates (described above). In the second stage, we will regress 

the outcome of interest on the covariates and the predicted propensity for each treatment 
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obtained from the first stage. The two stages will be estimated jointly so that standard 

errors reflect the uncertainty of both stages.   

While 2SLS will be a useful preliminary model to estimate the relative treatment effects, this 

approach has a major limitation as it requires highly implausible assumptions to estimate 

average treatment effects across the whole population of interest.   Hence, the main analysis 

will use an approach, two-stage residual inclusion (2SRI),35 that can provide estimates that 

apply across the full population and sub-populations of interest.   

4.5 Two stage Residual Inclusion (2SRI) 

The two-stage residual inclusion (2SRI) is an IV approach that relies on concepts underlying   

control function methods to address the risk of bias from unmeasured confounding.35 This 

approach includes the generalised residuals from the first-stage probit model, in the 

second-stage outcome models.35 Unlike 2SLS, the 2SRI approach, when applied to a binary 

or categorical treatment such as the three-way comparison in the PERMIT study, aims to 

estimate the Average Treatment Effects (ATEs) for the overall population and 

subpopulations of interest. 

In the second stage outcome models, we will use ordinary least squares models for 

continuous outcomes (e.g., 12 months HbA1c), and Cox proportional hazards models that 

account for individual frailty36 for censored outcomes (e.g. time to 3-point MACE). The 

second-stage outcome models for both the continuous and time to event measures, will 

include the generalised residuals from the first stage, all measured baseline covariates, NHS 

region and time period. For the censored outcomes, the concern that the underlying 

proportional hazards (PH) assumption may not hold, due to changes in the hazard ratios 

comparing second-line antidiabetic treatments over time will be considered graphically and 



23 

with appropriate tests. If there is evidence that the PH assumption is violated then 

estimates of the relative treatment effect will be reported by including a time period by 

treatment interaction term in the respective models. All standard errors will be calculated 

with non-parametric bootstrapping, and to recognise statistical uncertainty in the estimates 

of treatment effects, the data were bootstrapped 500 times, stratified by CCG, treatment 

group, and death and censoring status to maintain the structure of the original sample 

across replicates. From these models, we will estimate the relative effect of the prescription 

of DPP4i versus SU, SGLT2i vs SU and SGLT2i vs DPP4i on outcomes across all the people 

included in the study.   

In addition to the covariates included in Table 4, the methods described in sections 4.4 and 

4.5 will also consider the quadratic forms of age and baseline HbA1c as well as two sets of 

interactions. The first set of interactions are those between baseline HbA1c with age, sex 

and baseline BMI. The second set of interactions are the products of the IV (for the first 

stage models) or the treatment indicator variables (for the second stage models) with 

baseline HbA1c, eGFR, BMI, systolic blood pressure and age.   

To prevent overfitting the 2SLS and 2SRI models, we will use the lasso Regression algorithm 

to inform which of the interactions above are relevant in each case. The lasso aims to find 

the set of coefficients that minimise the sum-of-squares loss function subject to a constraint 

on the sum of absolute values of coefficients.37 This results in a linear regression in which 

only a small number of covariates have non-zero coefficient that can then be included in the 

model in question. In particular, we will use the rigorous lasso data-driven method that 

guarantees that the covariates in Table 4 are always included in the models and will only 

penalise (or discard) variables in the interaction sets.38   
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To select the variables included in the estimation of the 2SLS and 2SRI models, we will run 

the rigorous lasso for the first and second stage models for each outcome. The final set of 

covariates for each outcome will include all the covariates in Table 4 plus the interactions 

that will be selected in at least one model of the respective outcome.   

4.6 Subgroup analyses 

To limit the number of comparisons in the main analysis we will focus on the subgroup of 

prime interest, which is people with versus without established CVD (prevalent heart failure, 

ischemic heart disease (IHD), unstable angina, or previous stroke, myocardial infarction). 

This subgroup was selected in line with hypotheses that suggests SGLT2i may have a 

differential effect on subsequent rates of adverse cardiovascular events versus DPP4i and 

SU, for people with T2DM with pre-existing CVD.6,39   

In subsequent exploratory analyses we will also consider relative effectiveness according to 

the following additional subgroups: 

• Age (younger than 50 years old, 50-59 years, 60-69 years and 70 years and older) 

• Sex (male, female) 

• Ethnicity (White, South Asian, Black, and mixed/other, and missing) 

• BMI category (under/healthy weight (<25), overweight (25-29.9), obese I (30-34.9), 

obese II (35+ kg/m2)) 

• Deprivation (index of multiple deprivation quintiles) 

• Electronic frailty Index (non-frail (eFI 0-0.12), mild frailty (0.12–0.24), moderate 

frailty (0.24–0.36) and severe frailty (>0.36))40 

• With/without heart failure   
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• With/without reduced eGFR (eGFR≥60 ml/min/1.73m2 versus eGFR≥30 and <60 

ml/min/1.73m2) 

In further analyses, we will explore alternative data-driven methods to identify other 

subgroups for whom each treatment is beneficial/harmful, for example people with 

different combinations of long-term conditions. We will interpret the exploratory and 

further subgroup analyses as ‘hypothesis generating’. 

4.7 Handling missing data, censoring and loss to follow-up 

The PERMIT study uses routine linked data which raises several challenges for the statistical 

analysis. Missing data is present in continuous outcomes and, also, covariates which are 

used in the analysis of the continuous and TTE outcomes. For example, HbA1c information 

may not be available at the 12- month timepoint, because the patient does not attend the 

GP, within the requisite time period (between month 9 and month 15). Information on 

baseline covariates such as HbA1c prior to second-line treatment may also not be available 

within the requisite time window, and information for time-constant measures such as 

ethnicity, may not be available from either the CPRD or linked HES data. In addition to 

missing data, all patients are not fully followed from baseline to 5 years. For example, a 

patient enrolled in December 2020 will have 12 months follow-up to 2021 and can only be 

included in the analysis models for the continuous outcomes for the periods between 

baseline and 6 months or 1 year, as they are unobserved for subsequent timepoints. 

Background to the handling of missing data, censoring and loss to follow-up in this study 

The longitudinal follow-up of patients in the data is complicated by the presence of missing 

data, censoring and loss to follow-up. While a patient may be included in the study and alive 
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for the duration of follow-up, they may not have been seen in primary care and will thus 

have unobserved values between baseline and the end of study follow-up which we term 

`intermittent missingness’. We propose using multiple imputation (MI)41 to handle both 

missing values in the categorical or continuous baseline covariates (Table 4), and 

intermittent missingness in the continuous outcomes. The rationale for using MI is to 

impute these missing values with plausible substitutes based on the distribution of the 

observed data. Due to the non-linear trajectory of the continuous outcomes, it is best to 

utilise all information when imputing the outcome values. MI has the advantage of 

accounting for uncertainty in the imputed value while also incorporating observed 

relationships between the variable being imputed and other variables in the dataset. 

Therefore, for an unobserved outcome at time t we are able to incorporate the outcome 

values at all other times.   For example, a patient’s observed HbA1c values from baseline, 6 

months and 2-5 years would be used to impute their unobserved year 1 HbA1c value, in 

addition to any auxiliary information which would improve the imputed value.   

For patients who do not have full follow-up from baseline to 5 years due to death or 

censoring, it is complicated to include all follow-up measurements within any imputation 

process, and the nature of the form of end of follow-up will be recognised. A patient may be 

censored in the analysis models due to (i) end of study follow-up or (ii) the patient or GP 

practice no longer contributing to CPRD. We assume that these patients are censored 

‘completely at random’. This assumption would seem plausible as this censoring pertains to 

administrative reasons or due to the end of the follow-up period, which are unlikely to be 

related to the patient’s characteristics of interest in our analyses, such as their prognosis. A 

patient who died or was censored at time point t, where t = 0.5, 1, 2, …, 5 years, will be 

included in the continuous outcome analysis models described in sections 4.4-4.6 and any 
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missing information in covariates or outcomes from baseline to time t will need to be 

handled. For people who have died, their corresponding missing values prior to death are 

likely to differ to those who were alive at a given follow-up timepoint, and hence missing 

values for these people will be imputed separately from those with full follow-up, or those 

censored due to reasons other than death. While the implementation of the imputation 

models may for simplicity allow values to be imputed for timepoints after the time of 

censoring or death, we will respect censoring rules by dropping these imputed values prior 

to analysis. 

A person who died or whose data are censored may be lost to follow-up prior to the time of 

death or censoring. For example, a patient may have observed outcomes at timepoints prior 

to year 2, and is then lost to follow-up (i.e. no observed values for any outcomes of interest 

from time t onwards) and does not have measurements at years 3 and 4, before being 

censored at year 5. The unobserved values from year 3 to 5 (monotone missingness) will be 

imputed.   

Imputation steps 

Missing data will therefore be addressed using multiple imputation (MI)41 in the main 

analysis while respecting the reasons for any censoring (death or other reasons).42 The MI 

method used will be MI by chained equations (MICE)43 which will be used to generate 5 

imputed datasets (M=5). All variables with missing data (Covariates: Index of multiple 

deprivation, baseline HbA1c, baseline eGFR, baseline BMI, Smoking status and Alcohol 

status, ethnicity; Continuous outcomes at timepoint t: HbA1c, eGFR, BMI, SBP) will be 

imputed by predictive mean matching with 10 donors44 assuming that these data are 
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‘missing at random’ (MAR). This assumption implies that this intermittent missingness is at 

random, i.e., at random conditional on all other measures in the model including all 

preceding and subsequent levels of the measure in question, and the levels of any measures 

that were available at the timepoint in question.   Some measurements taken repeatedly 

over time, e.g., HbA1c and BMI, will be missing at baseline for some individuals, and the 

same rationale for supporting the underlying MAR assumption would apply here as for 

outcomes with intermittent missingness, given that measurements for time periods prior to 

baseline and during the subsequent follow-up periods will be available for the imputation 

models.   

For the time-constant baseline measures, the covariate with the greatest proportion of 

missing values is ethnicity. Previous literature has shown that conducting a MAR analysis for 

ethnicity can lead to similar point estimates as implementing missing data methods under 

the missing not at random assumption.45,46 Here, our base case analysis will use multiple 

imputation for ethnicity, along with the other covariates, and we will examine robustness to 

the assumed missing data mechanism by undertaking complete-case analysis in a sensitivity 

analysis.   

Squared terms for baseline continuous covariates (HbA1c, Age) and interaction terms will be 

treated as `just another variable’ (JAV)47 and imputed using PMM similarly to other baseline 

covariates. 

The imputation model will be stratified by the assignment of second-line treatment (DPP4i, 

SU, SGLT2i), and status across the follow-up period (full follow-up; death; censored due to 

end of follow-up or patient/GP stopped contributing to CPRD) which will lead to a total of 

nine imputation models. The continuous outcome imputation models will include (i) all 
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covariates from the analysis model and (ii) the continuous outcome variables for all time 

points. The baseline covariate imputation models will adjust for the same covariates as the 

continuous outcome models ( (i) and (ii) ), while also including time-to-event information48 

(the event indicators and Nelson-Aalen estimates for each TTE outcome). This will ensure 

congeniality between the imputed baseline values and both the continuous and TTE 

outcomes. The same imputed datasets will be used to investigate an interaction between 

existing CVD and second line treatment, by relying on PMM to relax model assumptions. 

Imputing individuals who died 

For individuals who died during the follow-up period, the imputation models for baseline 

covariates and continuous outcomes will include a continuous variable for the time to death 

from baseline, to recognise that this may be predictive of the missing outcome. The 

imputation process will impute values for the continuous outcomes at time t where t is a 

time post-death. However, for the subsequent outcome analysis models, all imputed values 

after the time of death will be discarded. 

Imputing individuals who are censored 

The reasons for censoring are (i) the end of the data extraction period (i.e., the end of 

follow-up) and (ii) the person or GP practice stop contributing to CPRD. Similarly, to those 

patients who are followed to the end of study, or those who have died, for those who are 

censored, one imputation model will be used (stratified by treatment) to impute missing 

covariate and continuous outcome values. Censoring rules will subsequently be applied at 
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the outcome analysis stage to remove any imputed continuous outcome values after the 

point of censoring. 

Post-imputation procedures 

The analysis model of interest, will be applied to each of the five imputed datasets. The 

relative treatment effects will be estimated using two-stage residual inclusion IV (with a 

frailty inclusion36 for time-to-event outcomes when using Cox proportional hazards). Rubin’s 

rules49 will be applied to obtain an overall treatment effect: 

𝜃̅𝜃�𝑑𝑑 = 𝑀𝑀 −1 � 𝜃𝜃� 𝑚𝑚 ,𝑑𝑑 

𝑀𝑀 

𝑚𝑚=1 

where d = SGLT2i or DPP4i.   

Confidence intervals for the treatment effects will be estimated using bootstrap sampling 

(BS). We will first bootstrap sample and then apply MI within each sample (BS-then-MI45,46). 

The original unimputed dataset will be used to draw B=500 bootstrap samples (this may be 

adjusted depending on Monte Carlo error), with the bootstrap draw stratified by GP region, 

treatment group, and follow-up status (fully-followed, death, censored) to maintain similar 

sampling patterns within each bootstrap sample.   

Within each bootstrap sample 𝑏𝑏 = 1, … , 𝐵𝐵 , we will take the same approach to handling 

missing data and implementing the analysis model. Rubin’s rules will be applied to the M 

imputed datasets of bootstrap sample b to get an overall treatment effect for drug d: 

𝜃̅𝜃�𝑏𝑏 ,𝑑𝑑 = 𝑀𝑀−1 � 𝜃𝜃� 𝑚𝑚 ,𝑑𝑑 

𝑀𝑀 

𝑚𝑚=1 
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The 500 estimates will be used to estimate variance and calculate t-based confidence 

intervals.   

R50 will be used for (i) the imputation of missing values in this analysis (MICE package51) and 

(ii) the analysis of time-to-event outcomes using individual frailty.52 Stata 1753 will be used 

for the analysis of continuous outcomes.   

4.8 Alternative analyses 

To investigate the extent to which the findings from the base case analysis are robust to 

alternative assumptions, we will undertake sensitivity analyses, including those described in 

Table 5. 

Table 5: Proposed sensitivity analyses 

Type of analysis 
alternative   

Cohort (imputed 
or complete 
case) 

Rationale 

Base case Imputed 
Alternative analysis 
– complete case 

Complete cases Assess whether the results are sensitive to an 
alternative assumption about the missing 
data. 

Alternative analysis 
– 2SLS IV model 

Complete case Compare the results of the base case (2SRI IV 
analysis) with those from an alternative IV 
model (2SLS). 

Alternative analysis 
– multivariable 
regression 
adjusted for 
measured 
confounders only 

Complete case Determine to what extent unmeasured 
confounding may be impacting the results 
in the base case.   

Alternative analysis 
– extend follow-up 
to 5 years rather 
than 2 years 

Complete cases For the main analyses, we will consider 
outcomes up to 2-years follow-up, 
assuming that beyond this time point most 
people will have switched antidiabetic 
treatment. We will extend follow-up to 5 
years in this alternative analysis, with 
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Type of analysis 
alternative   

Cohort (imputed 
or complete 
case) 

Rationale 

careful interpretation on treatment effects 
beyond the 2-year time point. 
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Appendix 

Amendments to the originally published PERMIT protocol1 (Bidulka et al., 2021) 

Link to published protocol paper: 
https://bmjopen.bmj.com/content/11/9/e046912.abstract   

Original text from the protocol is written in column 2, and amended text is written in 
column 3. The pieces of text that are bolded are the specific aspects of the original protocol 
which are amended. 

Amendment 
number 

Original plan (as per Bidulka et al. 
2021) 

Amended plan 

1 Study population: 
The study population will include 
people registered with a CPRD-
contributing practice, aged 18 years 
or older, diagnosed with T2DM who 
intensify antidiabetic treatment 
from metformin-monotherapy to a 
combination of metformin and SU, 
DPP4i or SGLT2i (second-line 
treatment) between 2014 and 
2020. 

Study population: 
The study population will include 
people registered with a CPRD-
contributing practice with 
HES/ONS/IMD linkage available, 
aged 18 years or older, diagnosed 
with T2DM who intensify 
antidiabetic treatment from 
metformin-monotherapy to a 
combination of metformin and SU, 
DPP4i or SGLT2i (second-line 
treatment) between 1 January 2015 
and 31 December 2020. 

Justification: 
The time to event outcomes require 
HES/ONS/IMD linkage. Further, 
additional data from HES (e.g., 
ethnicity data, comorbidity data), 
ONS (gold-standard death date in 
England and Wales), and the IMD 
(small-area deprivation) are 
important to reduce data 
missingness and misclassification.   

When designing the study, we 
anticipated that only 70% of the 
CPRD population in England would 
be eligible for HES-linkage based on 
data resource profiles for CPRD.16,17 

However, in our updated dataset 
the proportion eligible for linkage is 
91%. Thus, we feel that the balance 
between maximising study power 

https://bmjopen.bmj.com/content/11/9/e046912.abstract
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Amendment 
number 

Original plan (as per Bidulka et al. 
2021) 

Amended plan 

for all outcomes versus the benefits 
in analysing and interpreting results 
for one clearly defined cohort is in 
favour of latter.   

In addition, we have changed the 
study time period in which people 
can enter the study. We require one 
year of historical prescribing data 
from each person’s index date to 
define the instrument in our 
instrumental variable analysis – thus 
we must exclude people who 
initiate second-line antidiabetic 
treatment in 2014, since prior to 
this year SGLT2i were not widely 
prescribed. We also extended the 
dataset to allow for the inclusion of 
people who intensify second-line 
antidiabetic treatment up until 31 
December 2020. 

2 End of follow-up: 
People will remain exposed until the 
date the data are censored by 
death, the patient leaving the GP 
practice, the GP practice stops 
contributing to CPRD, or 31 July 
2020. 

End of follow-up: 
People will remain exposed until the 
date the data are censored by 
death, the patient leaving the GP 
practice, the GP practice stops 
contributing to CPRD, or 31 
December 2021 (for outcomes 
defined in primary care only) and 
31 March 2021 (for outcomes 
defined in secondary care (HES) or 
ONS data). 

Justification: 
The dataset was extended to allow 
for follow-up until 31 December 
2021 for outcomes defined in 
primary care data. For outcomes 
defined in secondary care data, we 
must end follow-up at 31 March 
2021 as this was the maximum 
amount of follow-up available at the 
time of study data extraction. 

3 Covariates: Covariates: 
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Amendment 
number 

Original plan (as per Bidulka et al. 
2021) 

Amended plan 

We will also identify HbA1c, systolic 
blood pressure (SBP), diastolic 
blood pressure (DBP), eGFR, body 
weight, and body-mass index (BMI) 
using values recorded in the 180 
days period before the second-line 
antidiabetic treatment initiation 
date in the primary care record. 

We will also identify HbA1c, systolic 
blood pressure (SBP), diastolic 
blood pressure (DBP), eGFR, body 
weight, and body-mass index (BMI) 
using values recorded in the 180 
days (HbA1c) and 540 days (SBP, 
DBP, eGFR, BMI) period before the 
second-line antidiabetic treatment 
initiation date in the primary care 
record. 

Justification: 
We follow precedent research that 
used a 540 day window pre-baseline 
to define these clinical measures at 
baseline.25 However, we still require 
HbA1c to have been measured 
within 180 days as we expect older 
values of HbA1c to be 
unrepresentative of the patient’s 
HbA1c status at baseline. 

4 Primary outcome: 
The primary outcome for objective 
2 (short-term relative effectiveness) 
will be absolute change in HbA1c% 
at 12 months follow-up. 

Primary outcome: 
The primary outcome for objective 
2 (short-term relative effectiveness) 
will be absolute change in HbA1c 
(mmol/mol) at 12 months follow-
up. 

Justification:   
UK is aligning with Europe and 
reporting HbA1c using International 
Federation of Clinical Chemistry 
(IFCC) units (mmol/mol) rather than 
Diabetes Control and Complications 
Trial (DCCT) unit (%). 

5 Secondary outcomes: 
We will also report change in HbA1c 
at 6–18, 24–30 and 36months 
follow-up, again using the closest 
HbA1c measure in the 3 months 
before and after the follow-up time 
point of interest. 

Secondary outcomes: 
We will also report change in 
HbA1c, eGFR, SBP, and BMI at 6-, 
24-, 36-, 48-, and 60-months 
follow-up, again using the closest 
outcome measure in the 3 months 
before and after the follow-up time 
point of interest. 

Justification: 
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Amendment 
number 

Original plan (as per Bidulka et al. 
2021) 

Amended plan 

Our dataset was updated to include 
a maximum follow-up time of 7 
years. We therefore increased the 
duration of follow-up time points of 
interest, and simplified to be at 
yearly intervals (other than the first 
6-month time-point). While we 
planned to investigate eGFR, BMI, 
and SBP at 12 months follow-up, we 
also plan to investigate these 
outcomes at every other follow-up 
time point of interest as per HbA1c. 

6 Secondary outcomes: 
Outcomes for long-term relative 
effectiveness (objective 3) will 
include macrovascular and 
microvascular conditions such as CV 
outcomes (MI, CHF, unstable 
angina, stroke), renal outcomes 
(nephropathy, ESRD, 40% decline in 
eGFR from baseline) and lower limb 
amputation. 

Secondary outcomes: 
Outcomes for long-term relative 
effectiveness (objective 3) will 
include macrovascular and 
microvascular conditions such as CV 
outcomes (3-point major adverse 
cardiovascular event (MACE), a 
composite outcome of myocardial 
infarction, stroke, and all-cause 
mortality), MI, CHF, unstable 
angina, stroke), renal outcomes (a 
composite kidney outcome (40% 
decline in eGFR from baseline, end-
stage kidney/renal disease (ESKD), 
and all-cause mortality), as well as 
nephropathy, ESRD, 40% decline in 
eGFR from baseline) and lower limb 
amputation. 

Justification: 
We seek to emulate trials which 
compare these second-line 
antidiabetic drugs, which often 
report MACE and a composite 
kidney outcome.8,54 The 
components of these outcomes 
were already specified in the 
protocol, and pre-specified adding 
the composite end-points before 
conducting analyses. 

7 Secondary outcomes: 
A 40% decline in eGFR will be 

Secondary outcomes: 
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Amendment 
number 

Original plan (as per Bidulka et al. 
2021) 

Amended plan 

defined as an eGFR measure ≤40% 
of baseline eGFR. 

A 40% decline in eGFR will be 
defined as an eGFR measure ≤60% 
of baseline eGFR. 

Justification: 
This was a mistake in the original 
protocol – the 40% decline should 
represent an eGFR measure that is 
≤60% of baseline eGFR. 

8 Analytical approach (Objective 1): 
We will describe trends in 
prescribing for T2DM second-line 
treatment for the duration of the 
study period across the UK and 
between CCGs. This analysis will 
update previous research which 
described the same second-line 
treatment use in the UK from 2000 
to 2017, and will employ similar 
methods. 

Analytical approach (Objective 1): 
We will describe trends in 
prescribing for T2DM second-line 
treatment for the duration of the 
study period across the UK and 
between CCGs, particularly with 
respect to clinically important 
factors predicting which type of 
second-line antidiabetic treatment 
people are prescribed, such as 
ethnicity and deprivation. This 
analysis will update previous 
research which described the same 
second-line treatment use in the UK 
from 2000 to 2017, and will employ 
similar methods. 

Justification:   
Understanding factors which predict 
prescribing for particular second-
line antidiabetic treatments is 
helpful to design the instrumental 
variable analysis. Previous work by 
Wilkinson et al (2018)24 described 
factors associated with choice of 
second-line antidiabetic treatment. 
We build off this work in 
understanding whether there are 
sociodemographic disparities in 
which type of second-line 
antidiabetic treatment is prescribed. 

9 Planned analyses – the IV: 
We will provide personalised 
estimates of treatment 

Planned analyses – the IV: 
Due to challenges in developing the 
methodology to compare three 
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Amendment 
number 

Original plan (as per Bidulka et al. 
2021) 

Amended plan 

effectiveness using the local IV 
(LIV) approach to predict the 
counterfactual outcomes that each 
person would experience if they 
were prescribed each second-line 
treatment. 

rather than two treatments using 
the local IV approach, we will 
instead use the two-stage residual 
inclusions (2SRI) model to conduct 
this analysis. This approach also 
enables treatment effectiveness to 
be reported for the overall 
populations and subpopulations of 
prime interest. 

10 Missing data: 
In our primary analysis, we will use 
a complete-case approach based 
on the main potential confounders 
listed in the covariates section. We 
will conduct secondary analyses 
using complete cases for the full 
list of potential confounders, 
including those expected to have a 
high proportion of missing data 
(see covariates section), which we 
do not expect to be missing at 
random. Because we cannot 
assume covariate measurements 
are missing at random and the IV 
model is computationally intensive, 
we will not use multiple 
imputation. We will adopt two main 
approaches based on the type of 
missingness for outcome data: (1) 
linear interpolation using values 
recorded during follow-up, and (2) 
inverse probability weighting (IPW) 
to those people lost to follow-up 
with no subsequent outcome 
measure. 

Missing data: 
We now propose using multiple 
imputation (MI) to handle missing 
values in covariates and 
intermittent missingness in the 
continuous outcomes as it will 
impute unobserved values with 
plausible substitutes based on the 
distribution of the observed data. 
We will handle loss to follow-up 
with inverse probability weighting. 

Justification. 
The initial data descriptions 
highlighted the non-linear trajectory 
of the continuous outcomes, it is 
best to utilise all information when 
imputing the outcome values. MI 
has the advantage of accounting for 
uncertainty in the imputed value 
while also incorporating observed 
relationships between the variable 
being imputed and other variables 
in the dataset.   

For loss to follow-up, previous work 
has shown the problems of using MI 
for imputing for timepoints beyond 
the observed data, and that IPW 
that only relies on baseline values to 
reweight the observations is more 
appropriate for handling this 
problem. 



39 

6. References 

1. Bidulka P, O’Neill S, Basu A, et al. Protocol for an observational cohort study 
investigating personalised medicine for intensification of treatment in people with type 2 
diabetes mellitus: the PERMIT study. BMJ Open. 2021;11(9):e046912. doi:10.1136/bmjopen-
2020-046912 
2. Bidulka P, Mathur R, Lugo-Palacios DG, et al. Ethnic and socioeconomic disparities in 
initiation of second-line antidiabetic treatment for people with type 2 diabetes in England: A 
cross-sectional study. Diabetes, Obesity and Metabolism. 2023;25(1):282-292. 
doi:https://doi.org/10.1111/dom.14874 
3. Hernán MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized 
Trial Is Not Available. Am J Epidemiol. 2016;183(8):758-764. doi:10.1093/aje/kwv254 
4. Hernán MA, Wang W, Leaf DE. Target Trial Emulation: A Framework for Causal 
Inference From Observational Data. Jama. 2022;328(24):2446-2447. 
doi:10.1001/jama.2022.21383 
5. Baiocchi M, Cheng J, Small DS. Instrumental variable methods for causal inference. 
Stat Med. Jun 15 2014;33(13):2297-340. doi:10.1002/sim.6128 
6. NICE guideline [NG28]: Type 2 diabetes in adults: management. Web. NICE. Accessed 
3 March, 2022. 
https://www.nice.org.uk/guidance/ng28/chapter/Recommendations#reviewing-drug-
treatments 
7. Buse JB, Wexler DJ, Tsapas A, et al. 2019 Update to: Management of Hyperglycemia 
in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) 
and the European Association for the Study of Diabetes (EASD). Diabetes care. 
2020;43(2):487. doi:10.2337/dci19-0066 
8. Glycemia Reduction in Type 2 Diabetes — Microvascular and Cardiovascular 
Outcomes. New England Journal of Medicine. 2022/09/22 2022;387(12):1075-1088. 
doi:10.1056/NEJMoa2200436 
9. Glycemia Reduction in Type 2 Diabetes — Glycemic Outcomes. New England Journal 
of Medicine. 2022/09/22 2022;387(12):1063-1074. doi:10.1056/NEJMoa2200433 
10. Wexler DJ, de Boer IH, Ghosh A, et al. Comparative Effects of Glucose-Lowering 
Medications on Kidney Outcomes in Type 2 Diabetes: The GRADE Randomized Clinical Trial. 
JAMA internal medicine. 2023;doi:10.1001/jamainternmed.2023.1487 
11. Type 2 diabetes [B] Pharmacological therapies with cardiovascular and other 
benefits in people with type 2 diabetes, NICE Guideline NG28. Web. National Institute for 
Health and Care Excellence (NICE). 2022. 
https://www.nice.org.uk/guidance/ng28/evidence/b-pharmacological-therapies-with-
cardiovascular-and-other-benefits-in-people-with-type-2-diabetes-pdf-10956473392 
12. Rosenstock J, Kahn SE, Johansen OE, et al. Effect of Linagliptin vs Glimepiride on 
Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes: The CAROLINA 
Randomized Clinical Trial. Jama. Sep 19 2019;322(12):1155-66. 
doi:10.1001/jama.2019.13772 
13. Wilkinson S, Douglas I, Stirnadel-Farrant H, et al. Changing use of antidiabetic drugs 
in the UK: trends in prescribing 2000–2017. BMJ Open. 2018;8(7):e022768. 
doi:10.1136/bmjopen-2018-022768 
14. Hernán MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized 
Trial Is Not Available. Am J Epidemiol. Apr 15 2016;183(8):758-64. doi:10.1093/aje/kwv254 

https://doi.org/10.1111/dom.14874
https://www.nice.org.uk/guidance/ng28/chapter/Recommendations#reviewing-drug-treatments
https://www.nice.org.uk/guidance/ng28/chapter/Recommendations#reviewing-drug-treatments
https://www.nice.org.uk/guidance/ng28/evidence/b-pharmacological-therapies-with-cardiovascular-and-other-benefits-in-people-with-type-2-diabetes-pdf-10956473392
https://www.nice.org.uk/guidance/ng28/evidence/b-pharmacological-therapies-with-cardiovascular-and-other-benefits-in-people-with-type-2-diabetes-pdf-10956473392


40 

15. Brookhart MA, Schneeweiss S. Preference-based instrumental variable methods for 
the estimation of treatment effects: assessing validity and interpreting results. The 
international journal of biostatistics. 2007;3(1):Article 14. doi:10.2202/1557-4679.1072 
16. Herrett E, Gallagher AM, Bhaskaran K, et al. Data Resource Profile: Clinical Practice 
Research Datalink (CPRD). Int J Epidemiol. Jun 2015;44(3):827-36. doi:10.1093/ije/dyv098 
17. Wolf A, Dedman D, Campbell J, et al. Data resource profile: Clinical Practice Research 
Datalink (CPRD) Aurum. International Journal of Epidemiology. 2019;48(6):1740-1740g. 
doi:10.1093/ije/dyz034 
18. Herbert A, Wijlaars L, Zylbersztejn A, Cromwell D, Hardelid P. Data Resource Profile: 
Hospital Episode Statistics Admitted Patient Care (HES APC). International journal of 
epidemiology. 2017;46(4):1093-1093i. doi:10.1093/ije/dyx015 
19. National statistics: English indices of deprivation 2019. Web. Ministry of Housing, 
Communities & Local Government. 2022. 
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019 
20. Penney B. The English Indices of Deprivation 2019 (IoD2019). 2019. Accessed 4 
March 2022. 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_ 
data/file/835115/IoD2019_Statistical_Release.pdf 
21. Guidance for industry: diabetes mellitus: developing drugs and therapeutic biologics 
for treatment and prevention. US Food and Drug Administration. 
https://www.regulations.gov/document/FDA-2008-D-0118-0003 
22. Farmer AJ, Rodgers LR, Lonergan M, et al. Adherence to Oral Glucose-Lowering 
Therapies and Associations With 1-Year HbA1c: A Retrospective Cohort Analysis in a Large 
Primary Care Database. Diabetes care. Feb 2016;39(2):258-263. doi:10.2337/dc15-1194 
23. Ranstam J. Hypothesis-generating and confirmatory studies, Bonferroni correction, 
and pre-specification of trial endpoints. Acta Orthop. Aug 2019;90(4):297. 
doi:10.1080/17453674.2019.1612624 
24. Wilkinson S, Douglas IJ, Williamson E, et al. Factors associated with choice of 
intensification treatment for type 2 diabetes after metformin monotherapy: a cohort study 
in UK primary care. Clin Epidemiol. 2018;10:1639-1648. doi:10.2147/CLEP.S176142 
25. Wilkinson S, Williamson E, Pokrajac A, et al. Comparative effects of sulphonylureas, 
dipeptidyl peptidase-4 inhibitors and sodium-glucose co-transporter-2 inhibitors added to 
metformin monotherapy: a propensity-score matched cohort study in UK primary care. 
Diabetes, Obesity and Metabolism. 2020;22(5):847-856. 
doi:https://doi.org/10.1111/dom.13970 
26. Levey AS, Inker LA, Matsushita K, et al. GFR decline as an end point for clinical trials 
in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food 
and Drug Administration. American journal of kidney diseases : the official journal of the 
National Kidney Foundation. Dec 2014;64(6):821-35. doi:10.1053/j.ajkd.2014.07.030 
27. Levin A, Agarwal R, Herrington WG, et al. International consensus definitions of 
clinical trial outcomes for kidney failure: 2020. Kidney Int. Oct 2020;98(4):849-859. 
doi:10.1016/j.kint.2020.07.013 
28. Bhaskaran K, Forbes HJ, Douglas I, Leon DA, Smeeth L. Representativeness and 
optimal use of body mass index (BMI) in the UK Clinical Practice Research Datalink (CPRD). 
BMJ Open. 2013;3(9):e003389. doi:10.1136/bmjopen-2013-003389 

https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/835115/IoD2019_Statistical_Release.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/835115/IoD2019_Statistical_Release.pdf
https://www.regulations.gov/document/FDA-2008-D-0118-0003
https://doi.org/10.1111/dom.13970


41 

29. Levey AS, Stevens LA, Schmid CH, et al. A New Equation to Estimate Glomerular 
Filtration Rate. Annals of Internal Medicine. 2009/05/05 2009;150(9):604-612. 
doi:10.7326/0003-4819-150-9-200905050-00006 
30. Stevens PE, Levin A. Evaluation and Management of Chronic Kidney Disease: 
Synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline. 
Annals of Internal Medicine. 2013/06/04 2013;158(11):825-830. doi:10.7326/0003-4819-
158-11-201306040-00007 
31. Widding-Havneraas T, Chaulagain A, Lyhmann I, et al. Preference-based instrumental 
variables in health research rely on important and underreported assumptions: a systematic 
review. J Clin Epidemiol. Nov 2021;139:269-278. doi:10.1016/j.jclinepi.2021.06.006 
32. Basu A. ESTIMATING PERSON-CENTERED TREATMENT (PeT) EFFECTS USING 
INSTRUMENTAL VARIABLES: AN APPLICATION TO EVALUATING PROSTATE CANCER 
TREATMENTS. J Appl Econ (Chichester Engl). June/July 2014;29(4):671-691. 
doi:10.1002/jae.2343 
33. Basu A, Gore JL. Are Elderly Patients With Clinically Localized Prostate Cancer 
Overtreated? Exploring Heterogeneity in Survival Effects. Medical care. Jan 2015;53(1):79-
86. doi:10.1097/mlr.0000000000000260 
34. Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA, Schneeweiss S. Instrumental 
variables I: instrumental variables exploit natural variation in nonexperimental data to 
estimate causal relationships. J Clin Epidemiol. Dec 2009;62(12):1226-32. 
doi:10.1016/j.jclinepi.2008.12.005 
35. Terza JV, Basu A, Rathouz PJ. Two-stage residual inclusion estimation: Addressing 
endogeneity in health econometric modeling. Journal of Health Economics. 2008/05/01/ 
2008;27(3):531-543. doi:https://doi.org/10.1016/j.jhealeco.2007.09.009 
36. Martínez-Camblor P, Mackenzie T, Staiger DO, Goodney PP, O'Malley AJ. Adjusting 
for bias introduced by instrumental variable estimation in the Cox proportional hazards 
model. Biostatistics. Jan 1 2019;20(1):80-96. doi:10.1093/biostatistics/kxx062 
37. Kreif N, DiazOrdaz K. Machine Learning in Policy Evaluation: New Tools for Causal 
Inference. Oxford University Press; 2019. 
38. Ahrens A, Hansen CB, Schaffer ME. lassopack: Model selection and prediction with 
regularized regression in Stata. The Stata Journal. 2020;20(1):176-235. 
doi:10.1177/1536867x20909697 
39. Zheng SL, Roddick AJ, Aghar-Jaffar R, et al. Association Between Use of Sodium-
Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl 
Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes: A 
Systematic Review and Meta-analysis. Jama. 2018;319(15):1580-1591. 
doi:10.1001/jama.2018.3024 
40. Clegg A, Bates C, Young J, et al. Development and validation of an electronic frailty 
index using routine primary care electronic health record data. Age and Ageing. 
2016;45(3):353-360. doi:10.1093/ageing/afw039 
41. Rubin DB. Multiple Imputation for Nonresponse in Surveys. Wiley Series in Probability 
and Statistics. John Wiley & Sons, Inc.; 1987. 
42. Seaman SR, White IR. Review of inverse probability weighting for dealing with 
missing data. Statistical Methods in Medical Research. 2013/06/01 2011;22(3):278-295. 
doi:10.1177/0962280210395740 

https://doi.org/10.1016/j.jhealeco.2007.09.009


42 

43. van Buuren S, Oudshoorn, C.G.M. Multivariate Imputation by Chained Equations: 
MICE V1.0 User's manual. TNO Report PG/VGZ/00.038. 2000. http://www.multiple-
imputation.com/ 
44. Morris TP, White IR, Royston P. Tuning multiple imputation by predictive mean 
matching and local residual draws. BMC Medical Research Methodology. 2014/06/05 
2014;14(1):75. doi:10.1186/1471-2288-14-75 
45. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-
related death using OpenSAFELY. Nature. 2020/08/01 2020;584(7821):430-436. 
doi:10.1038/s41586-020-2521-4 
46. Mathur R, Rentsch CT, Morton CE, et al. Ethnic differences in SARS-CoV-2 infection 
and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million 
adults in England: an observational cohort study using the OpenSAFELY platform. Lancet 
(London, England). May 8 2021;397(10286):1711-1724. doi:10.1016/s0140-6736(21)00634-6 
47. Seaman SR, Bartlett JW, White IR. Multiple imputation of missing covariates with 
non-linear effects and interactions: an evaluation of statistical methods. BMC Medical 
Research Methodology. 2012/04/10 2012;12(1):46. doi:10.1186/1471-2288-12-46 
48. White IR, Royston P. Imputing missing covariate values for the Cox model. Stat Med. 
Jul 10 2009;28(15):1982-98. doi:10.1002/sim.3618 
49. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues 
and guidance for practice. Stat Med. Feb 20 2011;30(4):377-99. doi:10.1002/sim.4067 
50. Team RC. R: A language and environment for statistical computing. Web. R 
Foundation for Statistical Computing. https://www.R-project.org/ 
51. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained 
Equations in R. Journal of Statistical Software. 12/12 2011;45(3):1 - 67. 
doi:10.18637/jss.v045.i03 
52. Therneau T. A Package for Survival Analysis in R: R package version 3.4-0. 
https://CRAN.R-project.org/package=survival 
53. StataCorp. Stata Statistical Software: Release 17. StataCorp LLC.   
54. Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of 
Medicine. 2022;388(2):117-127. doi:10.1056/NEJMoa2204233 

http://www.multiple-imputation.com/
http://www.multiple-imputation.com/
https://www.r-project.org/
https://cran.r-project.org/package=survival

	1. Overview of Statistical Analysis Plan (SAP)
	2. Background to the PERMIT study
	3. Target Trial Emulation
	3.1 Data sources
	3.2 Study population
	3.3 Sample size
	3.4 Treatments of interest
	3.5 Outcomes
	3.6 Potential confounders/covariables

	4. Analysis
	4.1 The key IV assumptions
	4.2 Checking IV assumptions
	4.3 Accounting for defiers/always takers

	4.4 Two stage Least Squares (2SLS)
	4.5 Two stage Residual Inclusion (2SRI)
	4.6 Subgroup analyses
	4.7 Handling missing data, censoring and loss to follow-up
	4.8 Alternative analyses

	Appendix
	6. References

