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Introduction

The aim of this presentation is to:

1. introduce the ideas of multiple imputation;

2. outline how to carry out multiple imputation, and

3. provide an intuitive justification for multiple imputation.



Why do multiple imputation?

One of the main problems with the single stochastic imputation
methods is the need for developing appropriate variance formulae
for each different setting.

Multiple imputation attempts to provide a procedure that can get
the appropriate measures of precision relatively simply in (almost)
any setting.

It was developed by Rubin is a survey setting (where it feels very
natural) but has more recently been used more widely.

Below, we assume we have an established method for fitting our
model, had the data been completely observed.
- e.g. regression, glm, ...



For simplicity, suppose we have only two variables in our data set.
Suppose one of them is observed on every unit. Call this Y1.
Suppose one is only observed on some units. Call this Y2.

The key idea
The key idea is to use the data from units where both (Y1,Y2) are
observed to learn about the relationship between Y1 and Y2. Then,
we use this relationship to complete the data set by drawing the
missing observations from the distribution of Y2|Y1. We do this K
(typically 5) times, giving rise to K complete data sets.
We analyse each of these data sets in the usual way.
We combine the results using particular rules.



Intuition behind multiple imputation

First, we model observed (Y1,Y2) pairs. These are shown below,
with a regression line through them. It’s crucial that the variable
with the missing values is the response, whether or not it is going
to be the response in the final model of interest. The ’?’ indicates
we have the value of Y1, but that for Y2 is missing.



Intuition behind multiple imputation

Next, we draw missing Y2 by (i) drawing from distribution of
regression line (ii) drawing from variablity about that line. In the
picture below, the dotted line is the regression line from the
observed data (as on the previous picture) and the red line is
drawn from the estimated distribution of the regression line (i.e.
the red line’s intercept and slope are drawn from the estimated
bivariate normal distribution of the intercept and slope).



Intuition behind multiple imputation

Then, a draw is made from the estimated normal distribution of
the residuals, and added to the line, to give the imputed points,
shown by red triangles.



Intuition behind multiple imputation

From this graph we can see straight away why replacing the
missing observations with the mean of Y2 is a bad idea. For
instance, the leftmost ’?’ in the fist picture above would be given
a value far above the regression line (which represents its expected
value given Y1).

We can also see why a single imputation on the regression line -
i.e. where the imputed data (triangles in the graph above) lies on
the regression line - is inadequate. This would be an over-confident
prediction of the missing value. Systematically doing this would
lead to estimates of standard errors that were too small, and
inferences that were therefore over-confident.



Intuition behind multiple imputation

However, a single imputation of each missing value is not
adequate, because we only know the distribution of the missing
values. Thus, we need to repeat the imputation process a number
of times, each time drawing a new regression line, and new
residuals about that regression line. We thus end up with a
number of completed data sets as follows:



Notation for analyses of imputed data sets

As described above, we have imputed K complete data sets.
Analysing each of them in the usual way (i.e. using the model
intended for the complete data) gives us K estimates of the original
quantity of interest, Q. Denote these estimates Q1, . . . ,QK . So,
each Q could represent a regression coefficient from a regression
model of interest which we fit to each imputed data set in turn.

The analysis of each imputed data set will also give an estimate of
the variance of Qk , say σ2

k . Again, this is the usual variance
estimate from the model.

We combine these quantities to get our overall estimate and its
variance using certain rules.



Intuition for combining the estimates
Consider the imputation of just 1 missing observation.

Imagine a 3-d representation, with the Ymiss axis going back into the
screen. Given a particular value of Yobs the imputations (numbered
1,2,3,4) combine with the observed data to give the estimates of Q
shown by the black dots. Each of these estimates also has a variance,
which is represented by the line through the black dot.



Intuition for combining the estimates

Now we project this into two-dimensions, over Ymiss .



Intuition for combining the estimates

The multiple imputation estimate is going to be the average of the
black dots. In other words, the average over the distribution of YM

given YO of Q, which is itself calculated from the observed and
“missing” data:

QMI = EYM |YO
E[Q(YO ,YM)]. (1)



Intuition for combining the estimates

The variance has to reflect two components; the variance of the
Q’s from the imputed datasets about their average and also the
variance of each Q estimate. In fact, it is the sum of these two;
i.e. in this case (with Q1, . . . ,Q4) the sample variability of
Q1, ...,Q4 about their mean, plus the average of the variance of
Q1, ...,Q4. These are known respectively as the between
imputation variance and the within imputation variance.

Mathematically,

V[QMI ] = EYM |YO
V[Q(YO ,YM)] + VYM |YO

E[Q(YO ,YM)].

This motivates the formulae for combining the estimates and
calculating the variance, which are given in the next section.



Combining the estimates

Let the multiple imputation estimate of Q be QMI . Then, following
from the above,

QMI =
1

K

K∑
k=1

Qk .

Further define the within imputation and between imputation
components of variance by

σ2
w =

1

K

K∑
i=1

σ2
k , and σ2

b =
1

K − 1

K∑
k=1

(Qk − QMI )
2,

where we recall our definition of σ̂2
k = V[Qk ]. Then the variance of

QMI is

σ2
MI =

(
1 +

1

K

)
σ2
b + σ2

w .



Testing hypotheses

We assume that, if the data were all observed, then our estimator
Q would have a normal distribution.
If this is so, we can compare

QMI − Q

σMI
∼ tν ,

a t-distribution with ν degrees of freedom, where

ν = (K − 1)

[
1 +

σ2
w

(1 + 1/K )σ2
b

]2

.



Testing hypotheses

The rate of missing information
If there were no missing data, and we used multiple imputation, we
should find that (1 + 1/K )σ2

b = 0. Thus the relative increase in
variance due to the missing data is

r =
(1 + 1/K )σ2

b

σ2
w

.

Alternatively, the ’rate of missing information’ is

(1 + 1/K )σ2
b

σ2
w + (1 + 1/K )σ2

b

=
r

1 + r
.

It turns out a better estimate of this quantity is

λ =
r + 2/(ν + 3)

1 + r
.



How do we draw YM |YO?

In the pictures above, we described a regression method for
drawing YM |YO . This should work reasonably if the data set is
large, as it is then an approximation to a Bayesian rule.
This rule says that, if θ is the parameter describing the joint
distribution of (YO ,YM) :

Posterior distn of ∝ Joint distn of X distn

(YM , θ) given YO (YM ,YO) given θ of θ.

We put an uninformative distribution on θ, and discard the values
of θ drawn from the posterior, leaving a sample from YM |YO .



Frequently asked questions

How many imputations?
• With 50% missing information, an estimate based on 5 impuitations has

SD 5% wider than one with an infinite number of impuations.

What if not MAR?
• Most software implementations assume MAR, but this is not necessary.

Why not compute just one imputation?
• Underestimates variance, as can’t estimate σ̂2

b.

What if I am interested in more than one parameter?
• Imputation proceeds in the same way, as does finding the overall estimate

of Q. However, the estimating the covariance matrix can be tricky.
Typically more imputations will be needed. See Schafer (2000) for a
discussion.



Some references for MI

Shafer (1999): Overview of how you do MI

Schafer (1997): Key book giving details of data augmentation and
MI methods in many models.

Rubin (1976): Article bringing together the theory in an accessible
way (for mathematical statisticians).

Rubin (1996): review of the use of MI after ∼ 18 years.

Horton and Lipsitz (2001): Comparison of software packages.

Allison (2000): - a cautionary tale!

https://journals.sagepub.com/doi/10.1177/096228029900800102
https://books.google.co.uk/books/about/Analysis_of_Incomplete_Multivariate_Data.html?id=3TFWRjn1f-oC
https://books.google.co.uk/books/about/Analysis_of_Incomplete_Multivariate_Data.html?id=3TFWRjn1f-oC
http://people.csail.mit.edu/jrennie/trg/papers/rubin-missing-76.pdf
http://people.csail.mit.edu/jrennie/trg/papers/rubin-missing-76.pdf
https://www.jstor.org/stable/2291635?seq=1
https://www.tandfonline.com/doi/abs/10.1198/000313001317098266
https://journals.sagepub.com/doi/10.1177/0049124100028003003


Software for drawing YM |YO .

We can use Markov Chain Monte Carlo (MCMC) methods to draw
from this posterior distribution, and then we discard the θ’s and
use the YM ’s as described above.

This approach is implemented in MLwiN. Other options include
WinBUGS or PROC MI in SAS.
Note that drawing from YM |YO and then doing the analysis in
WinBUGS can be unfeasibly slow even for moderate data sets.

One alternative is to use ’chained equations’ also known as
’regression switching’ or ’sequential regression imputation’ (all
variants of the same approach).
Please see the software page on our website.



Chained equations: some comments

Roughly, multiple imputation using chained equations proceeds as
follows. (We say ’roughly’, as implementations vary):

1. To get started, for each variable in turn fill in missing values
with randomly chosen observed values

2. ’filled-in’ values in the first variable are discarded leaving the
original missing values. These missing values are then imputed
using regression imputation on all other variables.

3. The ’filled-in’ values in the second variable are discarded.
These missing values are then imputed using ’proper’
regression imputation on all other variables.

4. This process is repeated for each variable in turn. Once each
variable has been imputed using the regression method we
have completed one ’cycle’.

5. The process is continued for several cycles, typically ∼ 10.



Chained equations: some comments

This was first published by Raghunathan et. a. (2001); see also
the SAS implementation.

For a medical example see Taylor et. al. (2002).

A Dutch group has developed related software; see Van Buuren et.
al. (1999), and associated S+ software.

This has been implemented in stata; see Royston (2004), and
stata help pages.
All the implementations are slightly different!

Although MICE is an attractive approach, overcoming some of the
issues with binary and ordinal data that are difficult for proper
multiple imputation, the lack of a well established theoretical basis
means even those who propose it suggest it is used cautiously.

https://pdfs.semanticscholar.org/13b3/0e35b9a54dad07094cfe4f50d40ff15d8370.pdf
https://deepblue.lib.umich.edu/handle/2027.42/91899
https://pubmed.ncbi.nlm.nih.gov/10204197/
https://pubmed.ncbi.nlm.nih.gov/10204197/
www.multiple-imputation.com
https://journals.sagepub.com/doi/10.1177/1536867X0400400301


Chained equations: some comments

To quote van Buuren and Oudshoorn (MICE):

’It is hard to establish convergence in the general case, but
simulation studies suggest that the coverage properties in some
important practical cases are quite good.’



Chained equations: some comments

The problem is that you are in effect defining many conditional
distributions, and this does not guarantee the existence of a joint
distribution.

Further discussion is given by Raghunathan et. a. (2001) (the
original paper), Gelman and Raghunathan (2001) and, briefly, in
Little and Rubin (2002).

Note further that, as implemented in stata it is inappropriate for
hierarchical data; generally if data are hierarchical, so should the
imputation be. See the article by Carpenter and Goldstein for the
multilevel modelling newsletter, downloadable from the preprints
page on this site. More generally, we think the general application
of this approach to hierarchical data is problematic.

https://pdfs.semanticscholar.org/13b3/0e35b9a54dad07094cfe4f50d40ff15d8370.pdf
http://www.stat.columbia.edu/~gelman/research/published/arnold2.pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119013563


Summary and conclusions

Untestable assumptions unavoidable with missing data.

Shun unprincipled methods.

MI is most convenient under MAR.
-To increase the chance that this is approximately true, we
may wish to include several predictors of missingness that we
do not want to adjust for in the final analysis.

Multiple imputation is particularly useful for missing covarites,
especially in:
-survey settings where there is a separate imputer and analyst
- large and messy problems, where a full likelihood or Bayesian
analysis is impractical.



Summary and conclusions

For models with missing responses, provided the covariates
predictive of dropout are included, similar results are obtained
to regression models (or mixed models, for longitudinal data).
- in most missing outcome situations, preferable not to use
multiple imputation, as it wastes information.

Ideally, should consider a form of sensitivity analysis, though
this is often not straightforward. - proper MI analyses are
awkward under MNAR; it is necessary to make proper
imputations from the posterior conditional on the missing
value indicator.
- Instead we can modify the imputation model to assess
sensitivity, for example by using a postulated accept-reject
mechanism on imputations.

Often, serious thought unavoidable!
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