
Principled methods

James Carpenter & Mike Kenward

Department of Medical Statistics
London School of Hygiene & Tropical Medicine

James.Carpenter@lshtm.ac.uk
https://missingdata.lshtm.ac.uk

June 2005

https://missingdata.lshtm.ac.uk


Table of Contents

Principled methods

Wholly model based methods

Simple stochastic imputation

Multiple (stochastic) imputation

Weighting methods

Conclusion



Principled methods

These all have the following in common:

No attempt is made to replace a missing value directly.
i.e. we do not pretend to ’know’ the missing values.

Rather: available information (from the observed data and
other contextual considerations) is combined with
assumptions not dependent on the observed data.



Principled methods

This is used to

1. either generate statistical information about each missing
value,
e.g. distributional information: given what we have observed,
the missing observation has a normal distribution with mean µ
and variance σ2, where the parameters can be estimated from
the data.

2. and/or generate information about the missing value
mechanism



Principled methods

The great range of ways in which these can be done leads to the
plethora of approaches to missing values. Here are some broad
classes of approach:

Wholly model based methods.

Simple stochastic imputation.

Multiple stochastic imputation.

Weighting methods



Wholly model based methods

A full statistical model is written down for the complete data.

Analysis (whether frequentist or Bayesian) is based on the
likelihood.
Assumptions must be made about the missing data mechanism:

If it is assumed MCAR or MAR, no explicit model is needed
for it.

Otherwise this model must be included in the overall
formulation.



Wholly model based methods

Such likelihood analyses requires some form of integration
(averaging) over the missing data. Depending on the setting this
can be done implicitly or explicitly, directly or indirectly,
analytically or numerically.

The statistical information on the missing data is contained in the
model.

Examples of this would be the use of linear mixed models under
MAR in SAS PROC MIXED or MLwiN.



Simple stochastic imputation

Instead of replacing a value with a mean, a random draw is
made from some suitable distribution.

Provided the distribution is chosen appropriately, consistent
estimators can be obtained from methods that would work
with the whole data set.

Very important in the large survey setting where draws are
made from units with complete data that are ’similar’ to the
one with missing values (donors).

There are many variations on this hot-deck approach.

Implicitly they use non-parametric estimates of the distribution
of the missing data: typically need very large samples.



Simple stochastic imputation

Although the resulting estimators can behave well, for precision
(and inference) account must be taken of the source of the
imputations (i.e. there is no ’extra’ data). This implies that the
usual complete data estimators of precision can’t be used.

Thus, for each particular class of estimator (e.g. mean, ratio,
percentile) each type of imputation has an associated variance
estimator that may be design based (i.e. using the sampling
structure of the survey) or model based, or model assisted (i.e.
using some additional modelling assumptions). These variance
estimators can be very complicated and are not convenient for
generalization.



Multiple (stochastic) imputation

This is very similar to the single stochastic imputation method,
except there are many ways in which draws can be made (e.g.
hot-deck non-parametric, model based).

The crucial difference is that, instead of completing the data once,
the imputation process is repeated a small number of times
(typically 5-10). Provided the draws are done properly, variance
estimation (and hence constructing valid inferences) is much more
straightforward.

As is discussed more in the ’introduction to multiple imputation’
document, the observed variability among the estimates from each
imputed data set is used in modifying the complete data estimates
of precision. In this way, valid inferences are obtained under
missing at random.



Weighting methods

We give a simple illustration of weighting methods and contrast
them with likelihood-based methods.
Example: simple continuous problem
Consider a simple linear regression setting:

E(Yi ) = θ0 + θ1xi = xTi θ, i = 1, ..., n, (1)

where Yi are independent and identically distributed as N(0, σ2).



Weighting methods

A typical data set might look like this:



Weighting methods

The ordinary least squares regression line (in this case maximum
likelihood) is obtained by solving the normal equations for β:

n∑
i=1

xi (yi − xTi β) = 0.

More generally we can get parameter estimates by solving
estimating equations:

U(Y; θ̂) =
n∑

i=1

Ui (yi ; θ̂) = 0.



Weighting methods

In this example, the estimates of the slope and intercept give the
following line:



Weighting methods

Suppose now that some response (i.e. Y ) observations are missing.
The implications are (i) possible bias in the estimate of the
intercept and slope and (ii) loss of precision in the estimate of the
intercept and slope. Suppose in particular that the responses are
MNAR; specifically that all observations greater than y=13 are
unobserved.



Weighting methods

In other words we lose all observations above the horizontal line in
the left-hand picture, leaving the observed data in the right hand
picture:

The ’completers’ regression line is now biased (and inconsistent).



Weighting methods

However, because in this case we know the missing value
mechanism and the distribution involved (which is unlikely in real
applications) we can do a valid analysis using likelihood methods.
In this special case the likelihood method is known as Tobit
regression.



Weighting methods

Both the ’completers’ and Tobit regression line are shown in the
figure below, where the completers line is bottom line at the right
hand end:



Weighting methods

To make it a little more realistic, suppose now that an observation
greater than 13 has a probability of 0.25 of being observed; in
other words instead of seeing the left hand plot below, we see the
right hand plot.



Weighting methods

The completers line is still inconsistent (lower line at right hand
end):



Weighting methods

We could use Tobit regression to correct for this (top line at right
hand end: original regression line; middle line at right hand end:
Tobit regression line; bottom line at right hand end: ’completers’
regression line).



Weighting methods

But there now exists an alternative correction, which requires only
that we know the probability of Yi being missing given its value. In
other words, we don’t need to know the distribution of the
observations as we do for the Tobit regression.
Let Ri be a random variable indicating whether Yi is missing or
not, so Ri = 0 implies Yi missing, and Ri = 1 implies Yi is
observed.
The following weighted estimating equation is unbiased for the
regression parameters:

n∑
i=1

RiUi (yi ; θ̂)

Pr(Ri = 1 | Yi )
= 0.



Weighting methods

In this (artificial) example

Pr(Ri = 1 | Yi > 13) =
1

4

and 1 otherwise, so we can use simple weighted least squares to
make the correction.



Weighting methods

Comparison of weighting with other methods. At right hand end,
top line is from weighted regression; second line is original
regression line; third line is tobit regression and fourth line is
completers analysis.



Weighting methods

We now look at the performance of these two methods in this
simple regression setting where the probability of observations
greater than 13 being seen is 0.25. For sample sizes of 20, 100 and
1000, the table below shows the mean and standard deviation of
the slope estimators (true value 2) over 10,000 simulations.



Weighting methods

Estimator Expected value SE

n = 30
Completers only 1.73 0.39
Tobit 1.99 0.33
Weighted 1.95 0.45

n = 100
Completers only 1.75 0.20
Tobit 1.98 0.18
Weighted 1.99 0.23

n = 1000
Completers only 1.74 0.063
Tobit 1.98 0.055
Weighted 2.00 0.070



Weighting methods

We see that both tobit and weighted regression are unbiased, but
that estimates from a weighted analysis are far more variable.



Conclusion

Our simple examples have illustrated that there are broadly two
forms of principled analysis:

1. likelihood methods, which make distributional assumptions
about the unseen data, and assumptions about the form
dropout mechanism.

2. weighting methods, which use the inverse of

Pr(Ri = 1 | Yi )

as weights.
In its simple form, weighting is much less precise. However, in
the session on weighting, we will see that this can be
addressed, albeit with difficulty.



Conclusion

In summary, in contrast to ad-hoc methods, principled methods
are:

based on a well-defined statistical model for the complete
data (assumptions), and explicit assumptions about the
missing value mechanism.

the subsequent analysis, inferences and conclusions are valid
under these assumptions.

this doesn’t mean the assumptions are necessarily true but it
does allow the dependence of the conclusions on these
assumptions to be investigated.
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